Impact of Geometry Dimension on Quality Factor and Mass-Sensitivity of PZT Thin Film-Based MicroCantilevers
Main Article Content
Abstract
The impact of the piezoelectric cantilever geometry and resonant mode on the quality factor and mass-sensitivity were investigated. The piezoelectric cantilevers with Pb(Zr0.52Ti0.48)O3 (PZT) as an active layer were fabricated based on MEMS technology. The PZT thin films were grown on the silicon-on-insulator substrates by pulsed laser deposition. It is shown that the resonant frequency of a defined vibration mode is inversely proportional to the length squared of the piezoelectric cantilever. The experimental results indicated that a shorter cantilever length will contribute to a larger quality factor. The cantilever quality factor has values in a range of 190 to 505, depending on the length and resonant mode. The mass-sensitivity increases when the cantilever length decreases and reaches the highest value of 37.6 Hz/pg for the 100-µm-long cantilever. High-mode vibration was successfully exhibited for the higher mass-detection sensitivity.
References
[2] Y. Lee, G. Lim, W. Moon, A Self-excited Micro Cantilever Biosensor Actuated by PZT Using the Mass Micro Balancing Technique, Sens. Actuators A, Vol. 130-131, 2006, pp. 105-110, https://doi.org/10.1016/j.sna.2005.11.067.
[3] S. Faegh, N. Jaliliand, S. Sridhar, A Self-sensing Piezoelectric Microcantilever Biosensor for Detection of Ultrasmall Adsorbed Masses: Theory and Experiments, Sensors, Vol. 13, No. 5, 2013, pp. 6089-6108, https://doi.org/10.3390/s130506089.
[4] J. P. McGovern, W. Y. Shih, R. Rest, M. Purohit, Y. Pandya, W. H. Shih, Label-free Flow-enhanced Specific Detection of Bacillus Anthracis Using a Piezoelectric Microcantilever Sensor, Analyst, Vol. 133, No. 5, 2008, pp. 649-654, https://doi.org/10.1039/B715948J.
[5] S. Shin, J. P. Kim, S. J. Sim, J. Lee, A Multisized Piezoelectric Microcantilever Biosensor Array for the Quantitative Analysis of Mass and Surface Stress, Appl. Phys. Lett., Vol. 93, No. 10, 2008, pp. 102902, https://doi.org/10.1063/1.2977869.
[6] T. Xu, Z. H. Wang, J. M. Miao, L. Yu, C. M. Li, Micro-machined Piezoelectric Membrane-based Immunosensor Array, Biosens. Bioelectron., Vol. 24, No. 4, 2008, pp. 638-643, https://doi.org/10.1016/j.bios.2008.06.024.
[7] H. Zhang, W. Pang, M. S. Marma, C. Y. Lee, S. Kamal-Bahl, E. S. Kim, C. E. McKenna, Label-free Detection of Protein–Ligand Interactions in Real Time Using Micromachined Bulk Acoustic Resonators, Appl. Phys. Lett., Vol. 96, No. 12, 2010, pp. 123702, https://doi.org/10.1063/1.3358118.
[8] T. Y. Kwon, K. Eom, J. H. Park, D. S. Yoon, T. S. Kim, H. L. Lee, In situ Real-time Monitoring of Biomolecular Interactions Based on Resonating Microcantilevers Immersed in a Viscous Fluid, Appl. Phys. Lett., Vol. 90, No. 22, 2007, pp. 223903, https://doi.org/10.1063/1.2741053.
[9] V. Ferrari, D. Marioli, A. Taroni, E. Ranucci, P. Ferruti, Development and Application of Mass Sensors Based on Flexural Resonances in Alumina Beams, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 43, No. 4, 1996, pp. 601-608, https://doi.org/10.1109/58.503720.
[10] S. Shin, S. Song, Y. Lee, N. Lee, J. Park, H. Park, J. Lee, Fabrication and Sensing Behavior of Piezoelectric Microcantilever for Nanobalance, Jpn. J. Appl. Phys., Vol. 42, No. 9S, 2003, pp. 6139-6142, https://doi.org/10.1143/JJAP.42.6139.
[11] J. H. Park, T. Y. Kwon, H. J. Kim, S. R. Kim, D. S. Yoon, C. I. Cheon, H. Kim, T. S. Kim, Resonance Properties and Mass Sensitivity of Monolithic Microcantilever Sensors Actuated by Piezoelectric PZT Thick Film, J. Electroceram., Vol. 17, No. 2, 2006, pp. 565-572, https://doi.org/10.1007/s10832-006-6290-8
[12] M. D. Nguyen, M. Dekkers, H. N. Vu, G. Rijnders, Film-thickness and Composition Dependence of Epitaxial Thin-film PZT-based Mass-sensors, Sens. Actuators A, Vol. 199, 2013, pp. 98-105, https://doi.org/10.1016/j.sna.2013.05.004
[13] M. D. Nguyen, H. Nazeer, M. Dekkers, D. H. A. Blank, G. Rijnders, Optimized Electrode Coverage of Membrane Actuators Based on Epitaxial PZT Thin Films, Smart Mater. Struct., Vol. 22, No. 8, 2013, pp. 085013, https://doi.org/10.1088/0964-1726/22/8/085013.
[14] S. P. Timoshenko, D. H. Young, W. Weaver Jr., Vibration Problems in Engineering, 4th Edition, John Wiley & Sons Inc., 1974.
[15] K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, D. Rugar, Quality Factors in Micron- and Submicron-thick Cantilevers, J. Microelectromech. Syst., Vol. 9, No. 1, 2000, pp. 117-125, https://doi.org/10.1109/84.825786.
[16] J. H. Park, T. Y. Kwon, D. S. Yoon, H. Kim, T. S. Kim, Fabrication of Microcantilever Sensors Actuated by Piezoelectric Pb(Zr0.52Ti0.48)O3 Thick Films and Determination of Their Electromechanical Characteristics, Adv. Funct. Mater., Vol. 15, No. 12, 2005, pp. 2021-2028, https://doi.org/10.1002/adfm.200500331.
[17] F. R. Blom, S. Bouwstra, M. Elwenspoek, J. H. J. Fluitman, Dependence of the Quality Factor of Micromachined Silicon Beam Resonators on Pressure and Geometry, J. Vac. Sci. Technol. B, Vol. 10, No. 1, 1992, pp. 19-26, https://doi.org/10.1116/1.586300.
[18] Z. Hao, A. Erbil, F. Ayazi, An Analytical Model for Support Loss in Micromachined Beam Resonators with In-plane Flexural Vibrations, Sens. Actuators A, Vol. 109, No. 1-2, 2003, pp. 156-164, https://doi.org/10.1016/j.sna.2003.09.037.
[19] J. W. Yi, W. Y. Shih, W. H. Shih, Effect of Length, Width, and Mode on the Mass Detection Sensitivity of Piezoelectric Unimorph Cantilevers, J. Appl. Phys., Vol. 91, No. 3, 2002, pp. 1680-1686, https://doi.org/10.1063/1.1427403.