Pham Kim Ngoc, Doan Thi Tu Uyen, Pham Le Quynh Nhu Phuong, Mai Ngoc Xuan Dat

Main Article Content

Abstract

The resistive switching memory device based on nanocomposites has become a potential candidate in the data storage field. Understanding resistive switching characteristics and electrical conduction mechanisms may support the appropriate way to fabricate and control the operation of a device. In this study, a capacitor-like structure using PVA-ZnO as an insulator layer was fabricated by a solution method. The crystalline structure, morphology, and absorption spectrum of ZnO nanoparticles were revealed respectively. The resistive switching effect was observed with the ON/OFF ratio of 0.5´102, high endurance, excellent retention and the electrical transport mechanisms were followed by the SCLC and Ohmic’s law in the low resistance state and Flower- Nordheim tunneling in the high resistance state. The resistive switching mechanism was contributed by the oxygen vacancies in ZnO nanoparticles and the oxygen ions in the bottom electrode.

Keywords: ZnO nanoparticle, nanocomposite, resistive switching, electrical conduction.

References

T. C. Chang, F. Y. Jian, S. C. Chen, And Y. T. Tsai, Developments In Nanocrystal Memory, Mater. Today,
Vol. 14, No. 12, 2011, pp. 608–615, https://doi.org/10.1016/S1369-7021(11)70302-9.
[2] M. F. Hung, Y. C. Wu, J. J. Chang, And K. S. Chang-Liao, Twin Thin-Film Transistor Nonvolatile Memory With An Indium-Gallium-Zinc- Oxide Floating Gate, Ieee Electron Device Lett., Vol. 34, No. 1, 2013, pp. 75–77, https://doi.org/10.1109/LED.2012.2226232.
[3] P. Misra, A. K. Das, And L. M. Kukreja, Switching Characteristics Of ZnO Based Transparent Resistive Random Access Memory Devices Grown By Pulsed Laser Deposition, Phys. Status Solidi Curr. Top. Solid State Phys.,
Vol. 7, No. 6, 2010, pp. 1718–1720, https://doi.org/10.1002/pssc.200983244.
[4] N. Raeis-Hosseini And J. S. Lee, Resistive Switching Memory Using Biomaterials, J. Electroceramics, Vol. 39, 2017, pp. 223–238, https://doi.org/10.1007/s10832-017-0104-z.
[5] Y. Song Et Al., 1/f Noise Scaling Analysis In Unipolar-Type Organic Nanocomposite Resistive Memory,
Acs Nano, Vol. 9, No. 7, 2015, pp. 7697–7703, https://doi.org/10.1021/acsnano.5b03168.
[6] G. Casula Et Al., Air-Stable, Non-Volatile Resistive Memory Based On Hybrid Organic/Inorganic Nanocomposites, Org. Electron., Vol. 18, 2015, pp. 17–23, https://doi.org/10.1016/j.orgel.2015.01.001.
[7] G. Khurana, P. Misra, N. Kumar, And R. S. Katiyar, Tunable Power Switching In Nonvolatile Flexible Memory Devices Based On Graphene Oxide Embedded With ZnO Nanorods, J. Phys. Chem. C, Vol. 118, 2014, pp. 21357–21364, https://doi.org/10.1021/jp506856f.
[8] S. R. Patil Et Al., Solution-Processable ZnO Thin Film Memristive Device For Resistive Random Access Memory Application, Electron., Vol. 7, No. 12, 2018, pp. 445, https://doi.org/10.3390/electronics7120445.
[9] T. Thanh Dao Et Al., High-Performance Nonvolatile Write-Once-Read-Many-Times Memory Devices With ZnO Nanoparticles Embedded In Polymethylmethacrylate, Appl. Phys. Lett., Vol. 99, No. 23, 2011, pp. 233303, https://doi.org/10.1063/1.3665937.
[10] M. Aslam, M. A. Kalyar, And Z. A. Raza, Polyvinyl Alcohol: A Review Of Research Status And Use Of Polyvinyl Alcohol Based Nanocomposites, Polymer Engineering And Science, Vol. 58, No. 12, 2018, pp. 2119–2132, https://doi.org/10.1002/pen.24855.
[11] N. K. Sekar Et Al., Fabrication Of Electrochemical Biosensor With ZnO-PVA Nanocomposite Interface For The Detection Of Hydrogen Peroxide, J. Nanosci. Nanotechnol., Vol. 18, No. 6, 2017, pp. 4371–4379, https://doi.org/10.1166/jnn.2018.15259.
[12] V. Viswanath, S. S. Nair, G. Subodh, And C. I. Muneera, Zinc Oxide Encapsulated Poly (Vinyl Alcohol) Nanocomposite Films As An Efficient Third-Order Nonlinear Optical Material: Structure, Microstructure, Emission And Intense Low Threshold Optical Limiting Properties, Mater. Res. Bull., Vol. 112, 2019, pp. 281–291, https://doi.org/10.1016/j.materresbull.2018.12.022.
[13] S. S. Mousavi, B. Sajad, And M. H. Majlesara, Fast Response ZnO/PVA Nanocomposite-Based Photodiodes Modified By Graphene Quantum Dots, Mater. Des., Vol. 162, 2019, pp. 249–255, https://doi.org/10.1016/j.matdes.2018.11.037.
[14] E. Gharoy Ahangar, M. H. Abbaspour-Fard, N. Shahtahmassebi, M. Khojastehpour, And P. Maddahi, Preparation and Characterization Of PVA/ZnO Nanocomposite, J. Food Process. Preserv., Vol. 39, No. 6, 2015, pp. 1442–1451, https://doi.org/10.1111/jfpp.12363.
[15] J. J. L. Hmar, Flexible Resistive Switching Bistable Memory Devices Using ZnO Nanoparticles Embedded In Polyvinyl Alcohol (PVA) Matrix And Poly(3,4-Ethylenedioxythiophene) Polystyrene Sulfonate (Pedot:PSS),
Rsc Adv., Vol. 8, No. 36, 2018, pp. 20423–20433, https://doi.org/10.1039/C8RA04582H.
[16] Z. L. Tseng, P. C. Kao, M. F. Shih, H. H. Huang, J. Y. Wang, And S. Y. Chu, Electrical Bistability In Hybrid ZnO Nanorod/Polymethylmethacrylate Heterostructures, Appl. Phys. Lett., Vol. 97, No. 21, 2010, pp. 212103, https://doi.org/10.1063/1.3511756.
[17] N. K. Pham Et Al., Comprehensive Resistive Switching Behavior Of Hybrid Polyvinyl Alcohol And Tio 2 Nanotube Nanocomposites Identified By Combining Experimental And Density Functional Theory Studies,
J. Mater. Chem. C, Vol. 6, No. 8, 2018, pp. 1971–1979, https://doi.org/10.1039/C7TC05140A.
[18] D. I. Son, C. H. You, W. T. Kim, J. H. Jung, And T. W. Kim, Electrical Bistabilities And Memory Mechanisms Of Organic Bistable Devices Based On Colloidal ZnO Quantum Dot-Polymethylmethacrylate Polymer Nanocomposites, Appl. Phys. Lett., Vol. 94, No. 13, 2009, pp. 35–38, https://doi.org/10.1063/1.3111445.
[19] R. Viswanatha Et Al., Synthesis And Characterization Of Mn-Doped ZnO Nanocrystals, J. Phys. Chem. B,
Vol. 108, No. 20, 2004, pp. 6303–6310, https://doi.org/10.1021/jp049960o.
[20] Y. Song And J. Yang, Preparation And In-Vitro Cytotoxicity Of Zinc Oxide Nanoparticles Against Osteoarthritic Chondrocytes, Trop. J. Pharm. Res., Vol. 15, No. 11, 2016, pp. 2321–2327, https://doi.org/10.4314/tjpr.v15i11.4.
[21] A. Khorsand Zak, R. Razali, W. H. Abd Majid, And M. Darroudi, Synthesis And Characterization Of A Narrow Size Distribution Of Zinc Oxide Nanoparticles, Int. J. Nanomedicine, Vol. 6, No. 1, 2011, pp. 1399–1403, https://doi.org/10.2147/IJN.S19693.
[22] P. Rajiv, S. Rajeshwari, And R. Venckatesh, Bio-Fabrication Of Zinc Oxide Nanoparticles Using Leaf Extract of Parthenium Hysterophorus L. And Its Size-Dependent Antifungal Activity Against Plant Fungal Pathogens, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., Vol. 112, 2013, pp. 384–387, https://doi.org/10.1016/j.saa.2013.04.072.
[23] S. S. M, L. Bose, And G. Kc, Optical Properties Of ZnO Nanoparticles, Sb Acad. Rev., Vol. Xvi, No. 1, 2009, pp. 57–65.
[24] K. S. Hemalatha, K. Rukmani, N. Suriyamurthy, And B. M. Nagabhushana, Synthesis, Characterization And Optical Properties Of Hybrid PVA-ZnO Nanocomposite: A Composition Dependent Study, Mater. Res. Bull., Vol. 51, 2014, pp. 438–446, https://doi.org/10.1016/j.materresbull.2013.12.055.
[25] N. Rana, A. K. Gathania, And S. Chand, Structural And Optical Properties Of ZnO Nanoparticles, International Conference on Solid-State And Organic Lighting, 2014, Vol. 6, pp. 8–12.
[26] M. C. Jun, S. U. Park, And J. H. Koh, Comparative Studies Of Al-Doped ZnO And Gadoped ZnO Transparent Conducting Oxide Thin Films, Nanoscale Res. Lett., Vol. 7, 2012, pp. 1–6, https://doi.org/10.1186/1556-276X-7-639.
[27] J. Li, S. Srinivasan, G. N. He, J. Y. Kang, S. T. Wu, And F. A. Ponce, Synthesis And Luminescence Properties Of ZnO Nanostructures Produced By The Sol-Gel Method, J. Cryst. Growth, Vol. 310, No. 3, 2008, pp. 599–603, https://doi.org/10.1016/j.jcrysgro.2007.11.054.
[28] K. Bandopadhyay And J. Mitra, Zn Interstitials And O Vacancies Responsible For N-Type ZnO: What Do The Emission Spectra Reveal?, Rsc Adv., Vol. 5, No. 30, 2015, pp. 23540–23547, https://doi.org/10.1039/C5RA00355E.
[29] D. Alegre, M. S. Martín-González, B. Alén, O. Caballero-Calero, And C. V. Manzano, Synthesis And Luminescence Properties Of Electrodeposited ZnO Films, J. Appl. Phys., Vol. 110, No. 4, 2011, pp. 043538, https://doi.org/10.1063/1.3622627.
[30] C. T. Quy Et Al., C2H5OH And NO2 Sensing Properties Of ZnO Nanostructures: Correlation Between Crystal Size, Defect Level And Sensing Performance, Rsc Adv., Vol. 8, No. 10, 2018, pp. 5629–5639, https://doi.org/10.1039/C7RA13702H.
[31] E. W. Lim And R. Ismail, Conduction Mechanism Of Valence Change Resistive Switching Memory: A Survey, Electronics, Vol. 4, No. 3, 2015, pp. 586–613, https://doi.org/10.3390/electronics4030586.
[32] G. Zhou, Z. Ren, L. Wang, B. Sun, S. Duan, And Q. Song, Artificial And Wearable Albumen Protein Memristor Arrays With Integrated Memory Logic Gate Functionality, Mater. Horizons, Vol. 6, No. 9, 2019, pp. 1877–1882, https://doi.org/10.1039/C9MH00468H.
[33] A. Younis, D. Chu, And S. Li, Bi-Stable Resistive Switching Characteristics In Ti-Doped ZnO Thin Films, Nanoscale Res Lett., Vol. 8, No. 1, 2013, pp. 1–6, https://doi.org/10.1186/1556-276X-8-154.
[34] C. Kumari, I. Varun, S. P. Tiwari, And A. Dixit, Interfacial Layer Assisted, Forming Free, And Reliable Bipolar Resistive Switching In Solution Processed BiFeO3 Thin Films, Aip Adv., Vol. 10, No. 2, 2020, https://doi.org/10.1063/1.5134972.
[35] S. Bhattacharjee, P. K. Sarkar, N. Roy, And A. Roy, Improvement Of Reliability Of Polymer Nanocomposite Based Transparent Memory Device By Oxygen Vacancy Rich ZnO Nanorods, Microelectron. Eng., Vol. 164, 2016, pp. 53–58, https://doi.org/10.1016/j.mee.2016.04.027.
[36] A. Chiolerio, I. Roppolo, K. Bejtka, A. Asvarov, And C. F. Pirri, Resistive Hysteresis In Flexible Nanocomposites And Colloidal Suspensions: Interfacial Coupling Mechanism Unveiled, Rsc Adv., Vol. 6, No. 61, 2016, pp. 56661–56667, https://doi.org/10.1039/C6RA10503C.
[37] C. Hu Et Al., The Effect Of Oxygen Vacancy On Switching Mechanism Of ZnO Resistive Switching Memory, Appl. Phys. Lett., Vol. 110, No. 7, 2017, pp. 1–5, https://doi.org/10.1063/1.4976512.