Hoang Ngoc Long, Vo Van Vien, Vu Hoa Binh

Main Article Content

Abstract

The one-loop contribution axion-photon-photon coupling is presented in the framework of the 3-3-1 model, in which the loop diagrams are finite. The decay of axion into two photons is demonstrated. This study shows that it is easy to fulfill dark matter candidate conditions for the axion in the model.


 

Keywords: Extensions of electroweak gauge sector, extensions of electroweak Higgs sector, Electroweak radiative correction.

References

[1] P. Sikivie, Invisible Axion Search Methods, Rev. Mod. Phys. Vol. 93, No. 1, 2021, pp. 015004, https://doi.org/10.1103/RevModPhys.93.015004.
[2] D. Banerjee et al., Search for Axionlike and Scalar Particles with the NA64 Experiment, Phys. Rev. Lett. Vol. 125, No. 8, 2020, pp. 081801, https://doi.org/10.1103/PhysRevLett.125.081801.
[3] P. F. Pérez, C. Murgui, A. D. Plascencia, Axion Dark Matter, Proton Decay and Unification, J. High Energ. Phys. Vol. 2020, No. 1, 2020, pp. 91, https://doi.org/10.1007/JHEP01(2020)091.
[4] C. Smorra et al., Direct Limits on the Interaction of Antiprotons with Axion-Like Dark Matter, Nature Vol. 575, No. 2019, 2019, pp. 310-314, https://doi.org/10.1038/s41586-019-1727-9.
[5] Z. Wang, L. Shao, L. X. Li, Resonant Instability of Axionic Dark Matter Clumps, JCAP Vol. 2020, No. 07, 2020, pp. 038, https://doi.org/10.1088/1475-7516/2020/07/038.
[6] R. Lasenby, Microwave Cavity Searches for Low-Frequency Axion Dark Matter, Phys. Rev. D, Vol. 102, No. 1, 2020, pp. 015008, https://doi.org/10.1103/PhysRevD.102.015008.
[7] A. Berlin et al., Axion Dark Matter Detection by Superconducting Resonant Frequency Conversion, J. High Energ. Phys. Vol. 2020, No. 07, 2020, pp. 088, https://doi.org/10.1007/JHEP07(2020)088.
[8] F. Pisano, V. Pleitez, Model for Electroweak Interactions, Phys. Rev. D Vol. 46, No. 1, 1992,
pp. 410-417, https://doi.org/10.1103/PhysRevD.46.410.
[9] P. H. Frampton, Chiral Dilepton Model and the Flavor Question, Phys. Rev. Lett. Vol. 69, No. 20, 1992,
pp. 2889-2891, https://doi.org/10.1103/PhysRevLett.69.2889.
[10] R. Foot et al., Lepton masses in an Gauge Model, Phys. Rev. D Vol. 47, No. 9, 1993,
pp. 4158-4161, https://doi.org/10.1103/PhysRevD.47.4158.
[11] M. Singer, J. W. F. Valle, J. Schechter, Canonical Neutral-Current Predictions from the Weak-Electromagnetic Gauge Group , Phys. Rev. D Vol. 22, No. 8, 1980, pp. 738-743, https://doi.org/10.1103/PhysRevD.22.738.
[12] R. Foot, H. N. Long, Tuan A. Tran, and Gauge Models with Right-Handed Neutrinos, Phys. Rev. D Vol. 50, No. 1, 1994, pp. R34-R38, https://doi.org/10.1103/PhysRevD.50.R34.
[13] J. C. Montero, F. Pisano, V. Pleitez, Neutral Currents and Glashow-Iliopoulos-Maiani Mechanism in Models for Electroweak Interactions, Phys. Rev. D Vol. 47, No. 7, 1993, pp. 2918-2929, https://doi.org/10.1103/PhysRevD.47.2918.
[14] H. N. Long, Model for Right-Handed Neutrino Neutral Currents, Phys. Rev. D, Vol. 54, No. 7, 1996, pp. 4691-4693, https://doi.org/10.1103/PhysRevD.54.4691.
[15] H. N. Long, Model with Right-Handed Neutrinos, Phys. Rev. D, Vol. 53, No. 1, 1996, pp. 437-445, https://doi.org/10.1103/PhysRevD.53.437.
[16] H. N. Long, N. Q. Lan, Self-interacting Dark Matter and Higgs Bosons in the Model with Right-Handed Neutrinos, Europhys. Lett. Vol. 64, No. 2003, 2003, pp. 571, https://doi.org/10.1209/epl/i2003-00267-5.
[17] P. B. Pal, The Strong-CP Question in Models, Phys. Rev. D Vol. 52, No. 3, 1995,
pp. 1659-1662, https://doi.org/10.1103/PhysRevD.52.1659.
[18] A. G. Dias, C. A. de S. Pires, P. S. Rodrigues da Silva, Discrete Symmetries, Invisible Axion and Lepton Number Symmetry in an Economic 3-3-1 Model, Phys. Rev. D Vol. 68, No. 11, 2003, pp. 115009,
https://doi.org/10.1103/PhysRevD.68.115009.
[19] J. G. Ferreira, C. A. de S. Pires, J. G. Rodrigues, P. S. R. da Silva, Embedding Cosmological Inflation, Axion Dark Matter and Seesaw Mechanism in a 3-3-1 Gauge Model, Phys. Lett. B Vol. 2017, No. 771, 2017,
pp. 199-205, https://doi.org/10.1016/j.physletb.2017.05.034.
[20] E. Aprile et al., (XENON Collaboration), Excess Electronic Recoil Events in XENON1T, Phys. Rev. D, Vol. 102, No. 7, 2020, pp. 072004, https://doi.org/10.1103/PhysRevD.102.072004.
[21] A. Alves, A. G. Dias, D. D. Lopes, Probing ALP-Sterile Neutrino Couplings at the LHC, J. High Energ. Phys,
Vol. 2020, No. 08, 2020, pp. 074, https://doi.org/10.1007/JHEP08(2020)074.
[22] H. N. Long, D. V. Soa, V. H. Binh, A. E. C. Hernandez, Linking Axion-Like Dark Matter, the XENON1T Excess, Inflation and the Tiny Active Neutrino Masses, arXiv: 2007.05004 [hep-ph].
[23] D. Bardin, G. Passarino, The Standard Model in the Making, Clarendon Press, Oxford, 1999.
[24] K. Aoki, Z. Hioki, R. Kawabe, M. Konuma, T. Muta, Electroweak Theory. Framework of On-Shell Renormalization and Study of Higher Order Effects, Prog. Theor. Phys. Supp. Vol. 73, No. 1982, 1982, pp. 1-226, https://doi.org/10.1143/PTPS.73.1.
[25] D. Ghost, D. Sachdeva, Constraints on Axion-Lepton Coupling from Big Bang Nucleosynthesis, JCAP, Vol. 2020, No. 10, 2020, pp. 060, https://doi.org/10.1088/1475-7516/2020/10/060.