Dao Viet Thang, Nguyen Manh Hung, Nguyen Phuong Thao, Nguyen Cao Khang, Le Thi Mai Oanh, Ngo Thi Cam Linh, Bui Dinh Tu

Main Article Content

Abstract

Bi1-xEuxFeO3 (BEFO) (x = 0.00 ÷ 0.10) materials were prepared by sol-gel method. The crystal structural, Raman scattering, magnetic and optical properties of BEFO were investigated by X-ray diffraction (XRD), Raman scattering spectroscopy, magnetic hysteresis (M-H) loops and fluorescence spectroscopy (FL), respectively. Obtained results of the characterization showed that Eu-doping affected structural, optical and magnetic properties of BFO materials. All samples were crystallized in the rhombohedral structure with R3C space group with crystal lattice parameters of a = 5.585 Å, c = 13.832 Å and the average crystal size of LXRD = 581 Å for BFO materials whereas the a, c and LXRD of Eu-doped samples decrease with the increasing of Eu3+ concentration. The analysis result of Raman scattering spectroscopy showed that the position of the characteristic peak for Bi-O covalent bonds shifts toward higher frequency when Eu3+ concentration increases, confirming the dopping substitution of Eu3+ ions into Bi-sites. Fluorescence spectra showed the enhancement of characteristic emission peaks with the increase of Eu concentration. All samples exhibited weak ferromagnetic behaviour with saturation magnetization of Ms = 0.006 emu/g and remnant magnetization of Mr = 0.004 emu/g for BFO materials. The value of Ms and Mr of Eu-doped BFO increases compared to those of undoped-BFO. The origin of ferromagnetism and fluorescence improvement has been discussed.

Keywords: Fluorescence, ferromagnetic, Eu-doped, X-ray, Raman.

References

W. Eerenstein, N. D. Mathur, J. F. Scott, Multiferroic and Magnetoelectric Materials, Nature, Vol. 442, 2006,
pp. 759-765, https://www.readcube.com/articles/10.1038/nature05023.
[2] R. Mazumder, P. S. Devi, D. Bhattacharya, P. Choudhury, A. Sen, M. Raja, Ferromagnetism in Nanoscale BiFeO3, Applied Physics Letters, Vol. 91, No. 6, 2007, pp. 062510, https://doi.org/10.1063/1.2768201.
[3] J. M. Moreau, C. Michel, R. Gerson, W. J. James, Ferroelectric Diffraction BiFeO3 X-ray and Neutron Study, Journal of Physics and Chemistry of Solids, Vol. 32, No. 6, 1971, pp. 1315-1320, https://doi.org/10.1016/S0022-3697(71)80189-0.
[4] A. R. Makhdoom, S. M. Shah, T. Mahmood, M. J. Iqbal, M. J. Akhtar, M. A. Rafiq, Enhancement of Ferromagnetism by Suppression of Spiral Spin Structure in Ba Doped BiFeO3, Journal of Magnetism and Magnetic Materials, Vol. 484, 2019, pp. 286-290, https://doi.org/10.1016/j.jmmm.2019.04.045.
[5] T. Tong, J. Chen, D. Jin, J. Cheng, Preparation and Gas Sensing Characteristics of BiFeO3 Crystallites, Materials Letters, Vol. 197, 2017, pp. 160-162, http://dx.doi.org/10.1016/j.matlet.2017.03.091.
[6] B. Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I. Belotelov, A. K. Zvezdin, D. Viehland, Magnetic-Field-Induced Phase Transition in BiFeO3 Observed by High-Field Electron Spin Resonance: Cycloidal to Homogeneous Spin Order, Physical Review B, Vol. 69, 2004, pp. 064114, https://journals.aps.org/prb/abstract/10.1103/PhysRevB.69.064114.
[7] Z. Lin, W. Cai, W. Jiang, C. Fu, C. Li, Y. Song, Effects of Annealing Temperature on The Microstructure, Optical, Ferroelectric and Photovoltaic Properties of BiFeO3 Thin Films Prepared by Sol–Gel Method, Ceramics International, Vol. 39, No. 8, 2013, pp. 8729-8736, http://dx.doi.org/10.1016/j.ceramint.2013.04.058.
[8] M. Sakar, S. Balakumar, P. Saravanan, S. N. Jaisankar, Annealing Temperature Mediated Physical Properties of Bismuth Ferrite (BiFeO3) Nanostructures Synthesized by a Novel Wet Chemical Method, Materials Research Bulletin, Vol. 48, No. 8, 2013, pp. 2878-2885, http://dx.doi.org/10.1016/j.materresbull.2013.04.008.
[9] A. Wrzesinska, A. Khort, I. Bobowska, A. Busiakiewicz, A. W. Puszkarz, Influence of The La3+, Eu3+, and Er3+ Doping on Structural, Optical, and Electrical Properties of BiFeO3 Nanoparticles Synthesized by Microwave-Assisted Solution Combustion Method, Journal of Nanomaterials, Vol. 2019, 2019, pp. 1-11, https://doi.org/10.1155/2019/5394325.
[10] X. Li, Z. Zhu, X. Yin, F. Wang, W. Gu, Z. Fu, Y. Lu, Enhanced Magnetism and Light Absorption of Eu-Doped BiFeO3, Journal of Materials Science: Materials in Electronics, Vol. 27, No. 7, 2016, pp. 7079-7083, https://link.springer.com/article/10.1007/s10854-016-4666-3.
[11] T. E. Bahraoui, T. S. Tlemçani, M. Taibi, H. Zaarour, A. E. Bey, A. Belayachi, A. T. Silver, G. Schmerber, A. M. E. Naggar, A. A. Albassam, G. Lakshminarayana, A. Dinia, M. A. Lefdil, Characterization of Multiferroic Bi1−xEuxFeO3 Powders Prepared by Sol-Gel Method, Materials Letters, Vol. 182, 2016, pp. 151-154, http://dx.doi.org/10.1016/j.matlet.2016.06.118.
[12] J. Liu, L. Fang, F. Zheng, S. Ju, M. Shen, Enhancement of Magnetization in Eu Doped BiFeO3 Nanoparticles, Applied Physics Letters, Vol. 95, No. 2, 2009, pp. 022511, http://dx.doi.org/10.1063/1.3183580.
[13] V. F. Freitas, H. L. C. Grande, S. N. Medeiros, I. A. Santos, L. F. Cótica, A. A. Coelho, Structural, Microstructural and Magnetic Investigations in High-Energy Ball Milled BiFeO3 and Bi0.95Eu0.05FeO3 Powders, Journal of Alloys and Compounds, Vol. 461, No. 1-2, 2008, pp. 48-52, https://doi.org/10.1016/j.jallcom.2007.07.069.
[14] J. S. Park, Y. J. Yoo, J. S. Hwang, J. H. Kang, B. W. Lee, Y. P. Lee, Enhanced Ferromagnetic Properties in Ho and Ni Co-Doped BiFeO3 Ceramics, Journal of Applied Physics, Vol. 115, No. 1, 2014, pp. 013904, http://dx.doi.org/10.1063/1.4860296.
[15] V. A. Surdu, R. D. Trusca, B. S. Vasile, O. C. Oprea, E. Tanasa, L. Diamandescu, E. Andronescu, A. C. Ianculescu, Bi1-xEuxFeO3 Powders: Synthesis, Characterization, Magnetic and Photoluminescence Properties, Nanomaterials (Basel), Vol. 9, No. 10, 2019, pp. 1465, https://doi.org/10.3390/nano9101465.
[16] M. Cazayous, D. Malka, D. Lebeugle, D. Colson, Electric Field Effect on BiFeO3 Single Crystal Investigated by Raman Spectroscopy, Applied Physics Letters, Vol. 91, 2007, pp. 071910, http://dx.doi.org/10.1063/1.2771380.
[17] G. L. Yuan, S. W. Or, H. L. Chan, Raman Scattering Spectra and Ferroelectric Properties of Bi1−xNdxFeO3 (x = 0-0.2) Multiferroic Ceramics, Journal of Applied Physics, Vol. 101, 2007, pp. 064101, http://dx.doi.org/10.1063/1.2433709.
[18] Y. Yang, J. Y. Sun, K. Zhu, Y. L. Liu, L. Wan, Structure Properties of BiFeO3 Films Studied by Micro-Raman Scattering, Journal of Applied Physics, Vol. 103, No. 9, 2008, pp. 093532, http://dx.doi.org/10.1063/1.2913198.
[19] T. Kushida, Site-Selective Fluorescence Spectroscopy of Eu3+ and Sm2+ Ions in Glass, Journal of Luminescence, Vol. 100, 2002, pp. 73-88, https://doi.org/10.1016/S0022-2313(02)00443-X.
[20] D. V. Thang, N. V. Quang, N. M. Hung, L. T. M. Oanh, N. C. Khang, B. D. Tu, D. T. X. Thao, N. V. Minh, Structural, Optical, Ferroelectric and Ferromagnetic Properties of Bi1−xGdxFeO3 Materials, Journal of Electronic Materials, Vol. 49, No. 7, 2020, pp. 4443-4449, https://doi.org/10.1007/s11664-020-08158-y.
[21] P. C. Sati, M. Kumar, S. Chhoker, Low Temperature Ferromagnetic Ordering and Dielectric Properties of Bi1-xDyxFeO3 Ceramics, Ceramics International, Vol. 41, No. 2, 2015, pp. 3227-3236, http://dx.doi.org/10.1016/j.ceramint.2014.11.012.
[22] P. Suresh, S. Srinath, Study of Structure and Magnetic Properties of Rare Earth Doped BiFeO3, Physica B: Condensed Matter, Vol. 448, 2014, pp. 281-284, http://dx.doi.org/10.1016/j.physb.2014.03.040.