Dang Thanh Hai, Vu Van Hung, Pham Ngoc Thu, Lo Ngoc Dung, Le Thi Thanh Huong, Hoang Thi Minh Anh, Le Thu Lam

Main Article Content

Abstract

Effect of dopant on structural and electrical properties of samarium-doped ceria (SDC) electrolyte was investigated using statistical moment method. Our results showed the lattice expansion due to doping and local distortion resulting from preferential distribution of oxygen vacancies around dopants. The ionic conductivity of SDC crystals is in more than three orders of magnitude larger than that of pure ceria. However, the presence of dopant in cation edge and the first nearest neighbor positions around migrating vacancy gives rise to the blocking and trapping effects on the vacancy transport. The maximum value of the ionic conductivity was found for the samples with  the dopant concentration x = 0.15. These results can be compared to the one of the published data of boththe  theoretical and experimental investigations.

Keywords: Samarium-doped ceria, structural property, electrical property, ionic conductivity.

References

[1] P. Arunkumar, M. Meena, K. Suresh Babu, A Review on Cerium-Based Electrolytes for ITSOFC, Nanomaterials and Energy, Vol. 1, No. 5, 2015, pp. 288-305, https://doi.org/10.1680/nme.12.00015.
[2] A. Choudhury, H. Chandra, A. Arora, Application of Solid Oxide Fuel Cell Technology for Power Generation - A Review, Renewable and Sustainable Energy Reviews, Vol. 20, 2013, pp. 430-442, http://www.sciencedirect.com/science/article/pii/S1364032112006430.
[3] V. V. Sizov, M. J. Lampinen, A. Laaksonen, Molecular Dynamics Simulation of Oxygen Diffusion in Cubic Yttria-Stabilized Zirconia: Effects of Temperature and Composition, Solid State Ionics, Vol. 226, 2014, pp. 29-35, https://doi.org/10.1016/j.ssi.2014.08.003.
[4] M. Irshad, K. Siraj, R. Raza, A. Ali, A Brief Description of High Temperature Solid Oxide Fuel Cell’s Operation, Materials, Design, Fabrication Technologies and Performance, Applied Sciences, Vol. 6, No. 3, 2016, pp. 75-98, https://doi.org/10.3390/app6030075.
[5] M. Coduri, S. Checchia, M. Longhi, D. Ceresoli, M. Scavini, Rare Earth Doped Ceria: The Complex Connection Between Structure and Properties, Frontiers in Chemistry, Vol. 6, 2018, pp. 526-1-526-23, https://www.frontiersin.org/articles/10.3389/fchem.2018.00526/full.
[6] S. Kuharuangrong, Ionic Conductivity of Sm, Gd, Dy and Er-Doped Ceria, Journal of Power Sources, Vol. 171, No. 2, 2007, pp. 506-510, https://doi.org/10.3389/fchem.2018.00526.
[7] H. Yahiro, Y. Eguchi, K. Eguchi, H. Arai, Oxygen Ion Conductivity of the Ceria-Samarium Oxide System with Fluorite Structure, Journal of Applied Electrochemistry, Vol. 18, 1988, pp. 527-531, https://link.springer.com/article/10.1007/BF01022246.
[8] S. Zha, C. Xia, G. Meng, Effect of Gd (Sm) Doping on Properties of Ceria Electrolyte for Solid Oxide Fuel Cells, Journal of Power Sources, Vol. 115, No. 1, 2003, pp. 44-48, https://doi.org/10.1016/S0378-7753(02)00625-0.
[9] S. Omar, E. D. Wachsman, J. L. Jones, J. C. Nino, Crystal Structure-Ionic Conductivity Relationships in Doped Ceria Systems, J. Am. Ceram. Soc., Vol. 92, No. 11, 2009, pp. 2674-2681, https://doi.org/10.1111/j.1551-2916.2009.03273.x.
[10] T. Shimonosono, Y. Hirata, Y. Ehira, S. Sameshima, T. Horita, H. Yokokawa, Electronic Conductivity Measurement of Sm- and La-Doped Ceria Ceramics by Hebb–Wagner Method, Solid State Ionics, Vol. 174,
No. 1-4, 2004, pp. 27-33, https://doi.org/10.1016/j.ssi.2004.07.025.
[11] J. Koettgen and M. Martin, The Ionic Conductivity of Sm-Doped Ceria, J. Am. Ceram. Soc., Vol. 103. No. 6, 2020, pp. 3776-3787, https://doi.org/10.1111/jace.17066.
[12] Z. Zhan, T. -L. Wen, H. Tu, Z. -Y. Lu, AC Impedance Investigation of Samarium-Doped Ceria, Journal of The Electrochemical Society, Vol. 148, 2001, pp. A427-A432, https://doi.org/10.1149/1.1359198.
[13] S. Grieshammer, B. O. H. Grope, J. Koettgen, M. Martin, A Combined DFT + U and Monte Carlo Study on Rare Earth Doped Ceria, Phys. Chem. Chem. Phys., Vol. 16, 2014, pp. 9974-9986, https://doi.org/10.1039/C3CP54811B.
[14] Z. Fu, Q. Sun, D. Ma, N. Zhang, Y. An, Z. Yang, Effects of Sm Doping Content on the Ionic Conduction of CeO2 in SOFCs from First Principles, Appl. Phys. Lett., Vol. 111, No. 2, 2017, pp. 023903-1-023903-5, https://doi.org/10.1063/1.4993897.
[15] A. Ismail, J. Hooper, J. B. Giorgi, T. K. Woo, A DFT+U Study of Defect Association and Oxygen Migration in Samarium-Doped Ceria, Phys. Chem. Chem. Phys, Vol. 13, 2011, pp. 6116-6124, https://doi.org/10.1039/C0CP02062A.
[16] S. Omar, E. D. Wachsman, J. L. Jones, J. C. Nino, Crystal Structure-Ionic Conductivity Relationships in Doped Ceria Systems, J. Am. Ceram. Soc., Vol. 92, No. 11, 2009, pp. 2674-2681, https://doi.org/10.1111/j.1551-2916.2009.03273.x.
[17] L. T. Lam, V. V. Hung, N. T. Hai, Study of Oxygen Vacancy Diffusion in Yttria doped Ceria and Yttria-Stabilized Zirconia by Statistical Moment Method, Communications in Physics. Vol. 29, No. 3, 2019, pp. 263-276.
[18] L. T. Lam, V. V. Hung, B. D. Tinh, Investigation of the Ionic Conductivities of Yttria-Doped Ceria and Yttria-Stabilized Zirconia by Using the Statistical Moment Method, Journal of the Korean Physical Society, Vol. 75, 2019, pp. 293-303, https://doi.org/10.3938/jkps.75.293.