Nenuwe Oyindenyifa Nelson, Omagbemı Oghogho

Main Article Content

Abstract

Half-Heusler (hH) alloys are an intriguing class of materials with significant potential for applications in spintronics, thermoelectrics, optoelectronics, and magnetoelectronics due to their unique adjustable properties. In this work, we have investigated the structural, thermodynamic, mechanical, and electronic properties of RuVZ (Z: As, Bi, Sb) half-Heusler materials using the density functional theory (DFT) as implemented in the quantum espresso computational suite. The structural, thermodynamic, and mechanical properties were also predicted using the linear response density functional perturbation theory. We observed that the hH alloys are non-magnetic semiconductors and have an indirect narrow band gap. The band gap values and lattice constants for RuVSb and RuVAs cubic crystals are consistent with published reports. RuVBi has a lattice constant of 6.18  and a band gap of 0.16 eV.  The elastic parameter results obtained satisfy Born's stability requirements, suggesting mechanical stability of the hH materials. All three alloys are found to be ductile. The RuVZ alloys obey the Dulong-Petit law at heat capacity of 74.7, 74.5, and 74.3 J mol-1K-1 and temperatures of 556, 754, and 775 K, respectively. The Debye temperature of 353.75K suggests that the RuVAs alloy is the hardest, with a significant Debye sound velocity (2997.12 m/s) and will have high thermal conductivity.


 

Keywords: Electronic, thermodynamic, mechanical, half-Heusler alloys, RuVBi.

References

[1] I. Zutic, J. Fabian, S.D. Sarma, Spintronics: Fundamentals and Applications, Revs. modern, Phys. Vol. 76, No. 2, 2004, pp. 323, https://doi.org/10.1103/RevModPhys.76.323.
[2] A. Hirohata, K. Takanashi, Future Perspectives for Spintronic Devices, J. Phys. D: Appl. Phys, Vol. 47, No. 19, 2014, pp. 193001, https://doi.org/10.1088/0022-3727/47/19/193001.
[3] F. Heusler, Über Magnetische Manganlegierungen, Verhandlungen der Deutschen Physikalischen Gesellschaft, Vol. 5, 1903, pp. 219.
[4] O. Heusler, Crystal Structure and Ferromagnetism of Manganese‐Aluminium‐Copper Alloys, Annalen der Physik, Vol. 411, No. 2, 1934, pp. 155-201,
5] H. Kurt, J.M.D. Coey, Magnetic and Electronic Properties of Thin Films of Mn-Ga and Mn-Ge Compounds with Cubic, Tetragonal and Hexagonal Crystal Structures, in Heusler Alloys, Springer Series Material Science, Vol. 222, 2016, pp. 57-191, https://doi.org/10.1007/978-3-319-21449-8_7.

[6] V. Alijani, J. Winterlik, G.H. Fecher, S.S. Naghavi, C. Felser, Quaternary Half-Metallic Heusler Ferromagnets for Spintronics Applications, Phys. Rev. B, Vol. 83, No. 18, 2011, pp. 184428, https://doi.org/10.1103/PhysRevB.83.184428.

[7] R.A. De Groot, F.M. Mueller, P.G. Van Engen, K.H.J. Buschow, New Class of Materials: Half-Metallic Ferromagnets, Phys. Rev. Lett, Vol. 50, No. 25, 1983, pp. 2024, https://doi.org/10.1103/PhysRevLett.50.2024.


[8] C.B. Park, H.I. Na, S.S. Yoo, K.S. Park, Electromechanical Properties of Amorphous Indium–Gallium–Zinc-Oxide Transistors Structured with An Island Configuration on Plastic, Appl. Phys. Express, Vol. 9, No. 3, 2016, pp. 031101, https://doi.org/10.7567/APEX.9.031101.

[9] J.P. H. Vigo-Cotrina, F. Garcia, E.R.P. Novais, A.P. Guimarães, Interaction between Magnetic Vortex Cores in a Pair of Nonidentical Nanodisks, J. Appl. Phys, Vol. 115, No. 20, 2014, pp. 203902, https://doi.org/10.1063/1.4878875.

[10] H.X. Liu, T. Kawami, K. Moges, T. Uemura, M. Yamamoto, F. Shi, P.M. Voyles, Influence of Film Composition In Quaternary Heusler Alloy Co2(Mn, Fe)Si Thin Films On Tunnelling Magnetoresistance of Co2(Mn, Fe) Si/MgO-based Magnetic Tunnel Junctions, J. Phys. D: Appl. Phys, Vol. 48, No. 16, 2015, pp. 164001, https://doi.org/10.1088/0022-3727/48/16/164001.

[11] W. Everhart, J. Newkirk, Mechanical properties of Heusler Alloys, Heliyon, Vol. 5, No. 5, 2019, pp. e01578, https://doi.org/10.1016/j.heliyon.2019.e01578.

[12] S. Chen, Z. Ren, Recent Progress of Half-Heusler for Moderate Temperature Thermoelectric Applications, Materials Today, Vol. 16, No. 10, 2013, pp. 387-395,
10.1016/j.mattod.2013.09.015.

[13] H. Xie, H. Wang, Y. Pei, C. Fu, X. Liu, G.J. Snyder, T. Zhu, Beneficial Contribution of Alloy Disorder to Electron and Phonon Transport in Half‐Heusler Thermoelectric Materials, Advanced Funct. Mats, Vol. 23, No. 41, 2013, pp. 5123-5130,
https://doi.org/10.1002/adfm.201300663.

[14] A. Planes, L. Mañosa, M. Acet, Magnetocaloric Effect and its Relation to Shape-Memory Properties in Ferromagnetic Heusler Alloys, J. Phys: Condens. Matter, Vol. 21, No. 23, 2009, pp. 233201, https://doi.org/10.1088/0953-8984/21/23/233201,.

[15] S. Singh, T.M. Bhat, D.C. Gupta, Effect of High Pressure and Temperature on Magneto-Electronic, Thermodynamic, and Transport Properties of Antiferromagnetic HoPdX (X= As, Ge) Alloys, J. Superconduct. Nov. Magn, Vol. 32, No. 7, 2019, pp. 2051-2065, https://doi.org/10.1007/s10948-018-4915-1.

[16] R. Dahal, G.C. Kaphle, Structural, Electronic and Magnetic Properties of XYZ Type Half-Heusler Alloys, J. Nepal Phys, Soc, Vol. 5, No. 1, 2019, pp. 97-102, https://doi.org/10.3126/jnphyssoc.v5i1.26938.

[17] H. Xie, H. Wang, C. Fu, Y. Liu, G.J. Snyder, X. Zhao, T. Zhu, The Intrinsic Disorder Related Alloy Scattering in ZrNiSn Half-Heusler Thermoelectric Materials, Scient. Rep, Vol. 4, No. 1, 2014, pp. 1-6, 10.1038/srep06888.

[18] T. Zhu, C. Fu, H. Xie, Y. Liu, X. Zhao, High efficiency half‐Heusler Thermoelectric Materials for Energy Harvesting, Adv. Energy Mats, Vol. 5, No. 19, 2015, pp. 1500588, https://doi.org/10.1002/aenm.201500588.

[19] J. Yang, H. Li, T. Wu, W. Zhang, L. Chen, J. Yang, Evaluation of Half‐Heusler Compounds as Thermoelectric Materials Based on the Calculated Electrical Transport Properties, Adv. Funct. Mats, Vol. 18, No. 19, 2008, pp. 2880-2888, https://doi.org/10.1002/adfm.200701369.

[20] Y. Liu, C. Fu, K. Xia, J. Yu, X. Zhao, H. Pan, T. Zhu, Lanthanide Contraction as a Design Factor for High‐Performance Half‐Heusler Thermoelectric Materials, Adv. Mats, Vol. 30, No. 32, 2018, pp. 1800881, https://doi.org/10.1002/adma.201800881..
[21] T. Fang, X. Zhao, T. Zhu, Band Structures and Transport Properties of High-Performance Half-Heusler Thermoelectric Materials by First Principles, Materials, Vol. 11, No. 5, 2018, pp. 847, https://doi.org/10.3390/ma11050847.

[22] M.J. Winiarski, K. Bilińska, High Thermoelectric Power Factors of P-Type Half-Heusler Alloys YNiSb, LuNiSb, YPdSb, and LuPdSb, Intermetallics, Vol. 108, 2019, pp. 55-60, https://doi.org/10.1016/j.intermet.2019.02.009.

[23] M.K. Yadav, B. Sanyal, First Principles Study of Thermoelectric Properties of Li-based Half-Heusler Alloys, J. Alloys Compds, Vol. 622, 2015, pp. 388-393, https://doi.org/10.1016/j.jallcom.2014.10.025.

[24] A. Berche, J.C. Tedenac, P. Jund, Phase Separation in the Half-Heusler Thermoelectric Materials (Hf, Ti, Zr) NiSn, Scripta. Matrialia, Vol. 139, 2017, pp. 122-125, https://doi.org/10.1016/j.scriptamat.2017.06.036.

[25] C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao, T. Zhu, Realizing High Figure of Merit in Heavy-Band P-Type Half-Heusler Thermoelectric Materials, Nature communications, Vol. 6, No. 1, 2015, pp. 1-7, 10.1038/ncomms9144.

[26] L. Hongzhi, Z. Zhiyong, M. Li, X. Shifeng, L. Heyan, Q. Jingping, W. Guangheng, Electronic Structure and Magnetic Properties of Fe2YSi (Y= Cr, Mn, Fe, Co, Ni) Heusler alloys: A Theoretical And Experimental Study, J. Phys D: Appl. Phys, Vol. 40, No. 22, 2007, pp. 7121, https://doi.org/10.1088/0022-3727/40/22/039.

[27] S.E. Kulkova, S.V. Eremeev, T. Kakeshita, S.S. Kulkov, G.E. Rudenski, The Electronic Structure and Magnetic Properties of Full-And Half-Heusler Alloys, Mats. trans, Vol. 47, No. 3, 2006, pp. 599-606, https://doi.org/10.2320/matertrans.47.599.

[28] Y. Gupta, M.M. Sinha, S.S. Verma, A First Principle Study of Structural, Electronic, and Vibrational Properties of LuPdBi Half‐Heusler Alloy, Physica Status Solidi (B), Vol. 256, No. 10, 2019, pp. 1900117, https://doi.org/10.1002/pssb.201900117.

[29] N. Mehmood, R. Ahmad, Structural, Electronic, Magnetic, and Optical Properties of Half-Heusler Alloys Rumnz (Z= P, As): A First-Principle Study, J. Superconduct, Nov. Magn, Ahmad, Vol. 31, No. 1, 2018, pp. 233-239, https://doi.org/10.1007/s10948-017-4196-0.

[30] A. Planes, L. Mañosa, M. Acet, Magnetocaloric Effect and Its Relation to Shape-Memory Properties in Ferromagnetic Heusler Alloys, J. Phys: Condens. Matter, Vol. 21, No. 23, 2009, pp. 233201, 10.1088/0953-8984/21/23/233201.

[31] R.C. Vivas, S.S. Pedro, C. Cruz, J.C.G. Tedesco, A.A. Coelho, A.M.G. Carvalho, M.S. Reis, Experimental Evidence of Enhanced Magnetocaloric Properties at Room Temperature and Half-Metallicity on Fe2MnSi-based Heusler alloys, Mats. Chem. Phys, Vol. 174, 2016, pp. 23-27, https://doi.org/10.1016/j.matchemphys.2016.02.045.

[32] G.A. Naydenov, P.J. Hasnip, V.K. Lazarov, M.I.J. Probert, Huge Power Factor In P-Type Half-Heusler Alloys NbFeSb and TaFeSb, J. Phys. Mats, Vol. 2, No. 3, 2019, pp. 035002, https://doi.org/10.1088/2515-7639/ab16fb.

[33] M. Gilleben, R. Dronskowski, A Combinatorial Study of Full Heusler Alloys By First‐Principles Computational Methods, J. Comp. Chem, Vol. 30, No. 8, 2009, pp. 1290-1299, https://doi.org/10.1002/jcc.21152.

[34] O.E. Osafile, J.O. Umukoro, Quasi-Harmonic Approximation Of Lattice Dynamics And Thermodynamic Properties Of Half Heusler ScXSb (x= Ni, Pd, Pt) from First Principles, J. Phys: Condens. Matter, Vol. 32, No. 47, 2020, pp. 475504, https://orcid.org/0000-0001-5154-7610.

[35] O.E. Osafile, N.O. Nenuwe, Lattice Dynamics and thermodynamic Responses of XNbSn Half-Heusler Semiconductors: A First-Principles Approach, J. Nigerian Soc. Phys, Sc, Vol. 3, 2021, pp. 121-130, https://doi.org/10.46481/jnsps.2021.174.

[36] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, R.M. Wentzcovitch, Quantum Espresso: A Modular and Open-Source Software Project For Quantum Simulations Of Materials, J. Phys: Condens. matter, Vol. 21, No. 39, 2009, pp. 395502, https://doi.org/10.1088/0953-8984/21/39/395502.

[37] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli, M. Calandra, S. Baroni, Advanced Capabilities for Materials Modelling with Quantum Espresso, J. Phys: Condens. Matter, Vol. 29, No. 46, 2017, pp. 465901, https://doi.org/10.1088/1361-648X/aa8f79.

[38] G. Kresse, D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B, Vol. 59, No. 3, 1999, pp. 1758,
https://doi.org/10.1103/PhysRevB.59.1758.

[39] P.E. Blöchl, Projector Augmented-Wave Method, Phys. Rev. B, Vol. 50, No. 24, 1994, pp. 17953, https://doi.org/10.1103/PhysRevB.50.17953.

[40] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation made Simple, Phys. Rev. Lett, Vol. 77, No. 18, 1996, pp. 3865,
https://doi.org/10.1103/PhysRevLett.77.3865.

[41] K. Burke, J.P. Perdew, M. Ernzerhof, Why Semilocal Functionals Work: Accuracy of the On-Top Pair Density and İmportance of System Averaging, J. Chem. Phys, Vol. 109, No. 10, 1998, pp. 3760-3771, https://doi.org/10.1063/1.476976.

[42] H.J. Monkhorst, J.D. Pack, Special Points for Brillouin-Zone İntegration, Phys. Rev. B, Vol. 13, No. 12, 1976, pp. 5188, https://doi.org/10.1103/PhysRevB.13.5188.

[43] P.L. Silvestrelli, N. Marzari, D. Vanderbilt, M. Parrinello, Maximally Localized Wannier Functions for Disordered Systems: Application to Amorphous Silicon, Solid State Communs, Vol. 107, No. 1, 1998, pp. 7-11, https://doi.org/10.1016/S0038-1098(98)00175-6.

[44] F.D. Murnaghan, Finite Deformations of an Elastic Solid, Amer. J. Maths, Vol. 59, No. 2, 1937, pp. 235-260, https://doi.org/10.2307/2371405.

[45] F.D. Murnaghan, The Compressibility of Media under Extreme Pressures, Proc, Nat. Acad. Sci, Vol. 30, No. 9, 1944, pp. 244,

[46] F. Birch, Finite Elastic Strain of Cubic Crystals, Phys. Rev, Vol. 71, No. 11, 1947, pp. 809, https://doi.org/10.1103/PhysRev.71.809.

[47] A. Kokalj, XCrySDen-A New Program for Displaying Crystalline Structures and Electron Densities, J. Mole. Graphics Model, Vol. 17, No. (3-4), 1999, pp. 176-179, https://doi.org/10.1016/S1093-3263(99)00028-5.

[48] S. Baroni, P. Giannozzi, A. Testa, Green’s-Function Approach to Linear Response in Solids, Phys. Rev. Lett, Vol. 58, No. 18, 1987, pp. 1861, https://doi.org/10.1103/PhysRevLett.58.1861.

[49] L., Hao, R. Khenata, X. Wang, T. Yang, Ab Initio Study of the Structural, Electronic, Magnetic, Mechanical and Thermodynamic Properties of Full-Heusler Mn2CoGa, J. Elect. Mat, Vol. 48, No. 10, 2019, pp. 6222-6230, https://doi.org/10.1007/s11664-019-07417-x.

[50] S. Chibani, O. Arbouche, M. Zemouli, Y. Benallou, K. Amara, N. Chami, M. El Keurti, First-Principles İnvestigation of Structural, Mechanical, Electronic, and Thermoelectric Properties of Half-Heusler Compounds RuVX (X= As, P, and Sb), Comp. Condens. Matter, Vol. 16, 2018, pp. e00312, https://doi.org/10.1016/j.cocom.2018.e00312.

[51] T. Fang, X. Zhao, T. Zhu, Band Structures and Transport Properties of High-Performance Half-Heusler Thermoelectric Materials by First Principles, Materials, Vol. 11, No. 5, 2018, pp. 847, https://doi.org/10.3390/ma11050847.

[52] T. Fang, S. Zheng, T. Zhou, L. Yan, P. Zhang, Computational Prediction of High Thermoelectric Performance in P-Type Half-Heusler Compounds with Low Band Effective Mass”, Phy. Chem, Vol. 19, No. 6, 2017, pp. 4411 – 4417, https://doi.org/10.1039/C6CP07897D.

[53] F. Shi, M.S. Si, J. Xie, K. Mi, C. Xiao, Q. Luo, Hybrid Density Functional Study of Bandgaps for 27 New Proposed Half-Heusler Semiconductors, J. Appl. Phys, Vol. 122, No. 21, 2017, pp. 215701, https://doi.org/10.1063/1.4998145.

[54] J. Ma, V.I. Hegde, K. Munira, Y. Xie, S. Keshavarz, D.T. Mildebrath, W.H. Butler, Computational İnvestigation of Half-Heusler Compounds for Spintronics Applications, Phys. Rev. B, Vol. 95, No. 2, 2017, pp. 024411, https://doi.org/10.1103/PhysRevB.95.024411.

[55] C.B. Evers, C.G. Richter, K. Hartjes, W. Jeitschko, Ternary Transition Metal Antimonides and Bismuthides with MgAgAs-type and Filled NiAs-type Structure, J. Alloys Compds, Vol. 252, No. (1-2), 1997, pp. 93-97, https://doi.org/10.1016/S0925-8388(96)02616-3.

[56] M. Born, K. Huang, Clarendon press 1954.

[57] S.F. Pugh, XCII Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals, J. Sci. Vol. 45, No. 367, 1954, pp. 823-843, https://doi.org/10.1080/14786440808520496.

[58] F. Cherifi, Z. Mostefa, A. Boukra, Z.F. Meghoufel, M. Bouattou, A.F. Kadi, F. Terki, Phys. Status Solid, B, 2020, pp. 2000271,

[59] M. Born, K. Huang, Dynamical Theory of Crystal Lattices, Clarendon press, 1954, https://doi.org/10.1107/S0365110X56002370.

[60] N.O. Nenuwe, E.O. Agbalagba, High-pressure Effect of Elastic and Mechanical Properties of Hexagonal Gallium Nitride, VNU J. Sci.: Maths-Phys, Vol. 37, No. 2, 2021, pp. 49-58, https://doi.org/10.25073/2588-1124/vnumap.4555.

[61] G.N. Greaves, A.L. Greer, R.S. Lakes, T. Rouxel, Poisson's Ratio and Modern Materials, Nature Mats, Vol. 10, No. 11, 2011, pp. 823-837, https://doi.org/10.1038/nmat3134.

[62] I.R. Shein, A.L. Ivanovskii, Elastic Properties of Mono-and Polycrystalline Hexagonal AlB2-Like Diborides of S,P and D Metals from First-Principles Calculations, J. Phys: Condens. Matter, Vol. 20, No. 41, 2008, pp. 415218, https://doi.org/10.1088/0953-8984/20/41/415218.