Vu Thi Huong

Main Article Content

Abstract

We consider a class of multi-dimensional stochastic differential equations driven by fractional Brownian motion with Hurst index . In particular, the drift coefficient blows up at 0. We first prove that this equation has a unique positive solution, and then propose a semi-implicit Euler approximation scheme for the equation, and finally show that it is also positive, and study its rate of convergence.


 

Keywords: Euler approximation, Fractional Brownian motion, Fractional stochastic differential equation.

References

T. Bollerslev, H. O. Mikkelsen, Modelling and Pricing Long Memory in Stock Market Volatility, Journal of Econometrics, Vol. 73, No. 1, 1996, pp. 151-184, https://doi.org/10.1016/0304-4076(95)01736-4.
Z. Ding, C.W. Granger, R.F.Engle, A Long Memory Property of Stock Market Returns and a New Model, Journal of Empirical Finance, Vol. 1, No. 1, 1993, pp. 83-106, https://doi.org/10.1016/0927-5398(93)90006-D.
K. Yamasaki, L. Muchnik, S. Havlin, A. Bunde, H.E. Stanley, Scaling and Memory in Volatility Return Intervals in Financial Markets, Proc. Natl. Acad. Sci. USA, Vol. 102, No. 26, 2005, pp. 9424-9428, https://doi.org/10.1073/pnas.0502613102.
Y. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes, Springer, Berlin, 2008.
J. C. Cox, J. E. Ingersoll, S. A. Ross, A Theory of The Term Structure of Interest Rates, Journal of Finance,
Vol. 53, No. 2, 1985, pp. 385-408, https://doi.org/10.2307/1911242.
J. Gatheral, T. Jaisson, M. Rosenbaum, Volatility is Rough, Quantitative Finance,Vol. 18, No. 6, 2018, pp. 933-949, https://doi.org/10.1080/14697688.2017.1393551.
O. Euch, M. Rosenbaum, The Characteristic Function of Rough Heston Models, Math. Finance, Vol. 29, No. 1, 2019, pp. 3-38, http://dx.doi.org/10.1111/mafi.12173.
Y. Mishura, A. Y. Tytarenko, Fractional Cox-Ingersoll-Ross Process with Nonzero "Mean", Mod. Stoch. Theory Appl., Vol. 5, No. 1, 2018, pp. 99-111, https://doi.org/10.15559/18-vmsta97.
J. Hong, C. Huang, M. Kamrani, X. Wang, Optimal Strong Convergence Rate of a Backward Euler Type Scheme for the Cox-Ingersoll-Ross Model Driven by Fractional Brownian Motion, Stochastic Processes and their Applications, Vol. 130, No. 5, 2020, pp. 2675-2692, https://doi.org/10.1016/j.spa.2019.07.014.
A. Deya, A. Neuenkirch, S. Tindel, A Milstein-Type Scheme without Lévy Area Terms for SDEs Driven by Fractional Brownian Motion, Ann. Inst. Henri Poincaré Probab. Stat, Vol.48, No. 2, 2012, pp. 518-550, https://doi.org/10.1214/10-AIHP392.
Y. Hu, Y. Liu, D. Nualart, Rate of Convergence and Asymptotic Error Distribution of Euler pproximation Schemes for Fractional Diffusions, Ann. Appl. Probab., Vol. 26, No. 2, 2016, pp. 1147-1207, https://doi.org/10.1214/15-AAP1114.
D. Nualart, A. Rascanu, Differential Equations Driven by Fractional Brownian Motion, Collect. Math., Vol. 53, No. 1, 2002, pp. 55-81.
Y. Hu, D. Nualart, X. Song, A Singular Stochastic Differential Equation Driven by Fractional Brownian Motion, Statist. Probab. Lett., Vol. 78, No. 14, 2008, pp. 2075-2085, http://dx.doi.org/10.1016/j.spl.2008.01.080.
H. L. Ngo, D. Taguchi, Semi-implicit Euler- Maruyama Approximation for Noncolliding Particle Systems, Annals of Applied Probability, Vol. 30, No. 2, 2020, pp. 673-705, https://doi.org/10.1214/19-AAP1512.
S. Dereich, A. Neuenkirch, L. Szpruch, An Euler-Type Method for The Strong Approximation for The Cox-Ingersoll-Ross Process, Proc. R. Soc. A, Vol. 468, No. 2140, 2012, pp. 1105-1115, https://doi.org/10.1098/rspa.2011.0505.
G. H. Golub, C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press, London, 2013.
J. F. Coeurjolly, Simulation and Identification of The Fractional Brownian Motion: A Bibliographical and Comparative Study, Journal of Statistical Software, Vol. 5, No. 7, 2000, pp. 1-53, https://doi.org/10.18637/jss.v005.i07.