Scalar-tensor Theory LG = ϕR − 2γϕη and the Problem of Dark Matter
Main Article Content
Abstract
Searching for the origin of the dark matter and the dark energy is among the problems that the modern physics, including the general theory of relativity, is facing to. Various theories or models have been proposed to solve these problems without satisfactory success yet. In this work, a new model based on the scalar-tensor theory with Lagrangian LG = ϕR − 2γϕη is suggested to solve some aspects of the above-mentioned problems. In this model the dark matter is interpreted as geometric background of the space-time.
Keywords:
Scalar-tensor theory, modified gravity, dark energy, dark matter, FLRW cosmology.
References
[1] L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields, Elsevier, Oxford, Vol. 2, 1994.
[2] S. Weinberg, Gravitation and Cosmology: Principle and Applications of the General Relativity, John Wiley & Son, New York, 1972.
[3] P. Salucci, A. Lapi, C. Tonini, G. Gentile, I. Yegorova, U. Klein, The Universal Rotation Curve of Spiral Galaxies. 2, The Dark Matter Distribution Out to the Virial Radius, Mon. Not. Roy. Astron. Soc, Vol. 378, 2007, pp. 41-47.
[4] E. Tempel, A. Tamm, P. Tenjes, Visible and Dark Matter in M31. 2. A Dynamical Model and Dark Matter Density Distribution, [arXiv:0707.4374 [astro-ph]].
[5] G. G. Raffelt, Dark Matter: Motivation, Candidates and Searches, [arXiv:hep-ph/9712538 [hep-ph]].
[6] R. Foot, Dissipative Dark Matter and the Rotation Curves of Dwarf Galaxies, JCAP, Vol. 1607, No. 07, 2016, pp. 011.
[7] K. A. Oman, J. F. Navarro, L. V. Sales, A. Fattahi, C. S. Frenk, T. Sawala, M. Schaller, S. D. M. White, Missing Dark Matter in Dwarf Galaxies?, Mon. Not. Roy. Astron. Soc, Vol. 460, No. 4, 2016, pp. 3610.
[8] D. Huterer, M. S. Turner, Prospects for Probing the Dark Energy Via Supernova Distance Measurements, Phys. Rev. D, Vol. 60, 1999, pp. 081301.
[9] S. Perlmutter et al., [Supernova Cosmology Project], Measurements of Ω and Λ from 42 High Redshift Supernovae, Astrophys. J, Vol. 517, 1999, pp. 565-586.
[10] A. G. Riess et al., [Supernova Search Team], Observational Evidence from Supernovae for an Accelerating Universe and A Cosmological Constant, Astron. J, Vol. 116, 1998, pp. 1009.
[11] S. Perlmutter et al., [Supernova Cosmology Project Collaboration], Measurements of Omega and Lambda from 42 High Redshift Supernovae, Astrophys. J, Vol. 517, 1999, pp. 565.
[12] C. G. Boehmer, T. Harko, F. S. N. Lobo, Dark Matter As A Geometric Effect in f(R) Gravity, Astropart. Phys, Vol. 29, 2008, pp. 386-392.
[13] A. D. Felice, S. Tsujikawa, f(R) Theories, Living Rev. Rel, Vol. 13, 2010, pp. 3.
[14] T. P. Sotiriou, V. Faraoni, f(R) Theories of Gravity, Rev. Mod. Phys, Vol. 82, 2010, pp. 451.
[15] S. Capozziello, M. De Laurentis, Extended Theories of Gravity, Phys. Rept, Vol. 509, 2011, 167.
[16] A. Friedman, On the Curvature of Space (Translted from German), Z. Phys, Vol. 10, 1922, pp. 377-386.
[17] G. Lemaitre, A Homogeneous Universe of Constant Mass and Increasing Radius Accounting for the Radial Velocity of Extra-Galactic Nebulae (Translted from French), Mon. Not. Roy. Astron. Soc, Vol. 91, 1931, pp. 483-490.
[18] E. Hubble, A Relation Between Distance and Radial Velocity Among Extra-Galactic Nebulae, Proc. Nat. Acad. Sci, Vol. 15, 1929, pp. 168-173.
[19] S. Weinberg, The Cosmological Constant Problem, Rev. Mod. Phys, Vol. 61, 1989, pp. 1.
[20] R. Bousso, The Cosmological Constant Problem, Dark Energy, and the Landscape of String Theory, Pontif. Acad. Sci. Scr. Varia, Vol. 119, 2011, pp. 129.
[21] P. Van Ky, N. T. H. Van, N. A. Ky, Perturbative Approach to f(R)-gravitation in FLRW Cosmology, [arXiv:2206.11259 [gr-qc]].
[22] J. Binny, S. Tremaine, Galactic Dynamics, Princeton University Press, Princeton, 2nd Ed. 2008.
[23] A. Naruko, D. Yoshida, S. Mukohyama, Gravitational Scalar–Tensor Theory, Class. Quant. Grav, Vol. 33, No. 9, 2016, pp. 09LT01.
[24] S. Capozziello, R. De Ritis, C. Rubano, P. Scudellaro, Exact Solutions in Brans-Dicke Matter Cosmologies, Int. J. Mod. Phys. D, Vol. 5, 1996, pp. 85.
[2] S. Weinberg, Gravitation and Cosmology: Principle and Applications of the General Relativity, John Wiley & Son, New York, 1972.
[3] P. Salucci, A. Lapi, C. Tonini, G. Gentile, I. Yegorova, U. Klein, The Universal Rotation Curve of Spiral Galaxies. 2, The Dark Matter Distribution Out to the Virial Radius, Mon. Not. Roy. Astron. Soc, Vol. 378, 2007, pp. 41-47.
[4] E. Tempel, A. Tamm, P. Tenjes, Visible and Dark Matter in M31. 2. A Dynamical Model and Dark Matter Density Distribution, [arXiv:0707.4374 [astro-ph]].
[5] G. G. Raffelt, Dark Matter: Motivation, Candidates and Searches, [arXiv:hep-ph/9712538 [hep-ph]].
[6] R. Foot, Dissipative Dark Matter and the Rotation Curves of Dwarf Galaxies, JCAP, Vol. 1607, No. 07, 2016, pp. 011.
[7] K. A. Oman, J. F. Navarro, L. V. Sales, A. Fattahi, C. S. Frenk, T. Sawala, M. Schaller, S. D. M. White, Missing Dark Matter in Dwarf Galaxies?, Mon. Not. Roy. Astron. Soc, Vol. 460, No. 4, 2016, pp. 3610.
[8] D. Huterer, M. S. Turner, Prospects for Probing the Dark Energy Via Supernova Distance Measurements, Phys. Rev. D, Vol. 60, 1999, pp. 081301.
[9] S. Perlmutter et al., [Supernova Cosmology Project], Measurements of Ω and Λ from 42 High Redshift Supernovae, Astrophys. J, Vol. 517, 1999, pp. 565-586.
[10] A. G. Riess et al., [Supernova Search Team], Observational Evidence from Supernovae for an Accelerating Universe and A Cosmological Constant, Astron. J, Vol. 116, 1998, pp. 1009.
[11] S. Perlmutter et al., [Supernova Cosmology Project Collaboration], Measurements of Omega and Lambda from 42 High Redshift Supernovae, Astrophys. J, Vol. 517, 1999, pp. 565.
[12] C. G. Boehmer, T. Harko, F. S. N. Lobo, Dark Matter As A Geometric Effect in f(R) Gravity, Astropart. Phys, Vol. 29, 2008, pp. 386-392.
[13] A. D. Felice, S. Tsujikawa, f(R) Theories, Living Rev. Rel, Vol. 13, 2010, pp. 3.
[14] T. P. Sotiriou, V. Faraoni, f(R) Theories of Gravity, Rev. Mod. Phys, Vol. 82, 2010, pp. 451.
[15] S. Capozziello, M. De Laurentis, Extended Theories of Gravity, Phys. Rept, Vol. 509, 2011, 167.
[16] A. Friedman, On the Curvature of Space (Translted from German), Z. Phys, Vol. 10, 1922, pp. 377-386.
[17] G. Lemaitre, A Homogeneous Universe of Constant Mass and Increasing Radius Accounting for the Radial Velocity of Extra-Galactic Nebulae (Translted from French), Mon. Not. Roy. Astron. Soc, Vol. 91, 1931, pp. 483-490.
[18] E. Hubble, A Relation Between Distance and Radial Velocity Among Extra-Galactic Nebulae, Proc. Nat. Acad. Sci, Vol. 15, 1929, pp. 168-173.
[19] S. Weinberg, The Cosmological Constant Problem, Rev. Mod. Phys, Vol. 61, 1989, pp. 1.
[20] R. Bousso, The Cosmological Constant Problem, Dark Energy, and the Landscape of String Theory, Pontif. Acad. Sci. Scr. Varia, Vol. 119, 2011, pp. 129.
[21] P. Van Ky, N. T. H. Van, N. A. Ky, Perturbative Approach to f(R)-gravitation in FLRW Cosmology, [arXiv:2206.11259 [gr-qc]].
[22] J. Binny, S. Tremaine, Galactic Dynamics, Princeton University Press, Princeton, 2nd Ed. 2008.
[23] A. Naruko, D. Yoshida, S. Mukohyama, Gravitational Scalar–Tensor Theory, Class. Quant. Grav, Vol. 33, No. 9, 2016, pp. 09LT01.
[24] S. Capozziello, R. De Ritis, C. Rubano, P. Scudellaro, Exact Solutions in Brans-Dicke Matter Cosmologies, Int. J. Mod. Phys. D, Vol. 5, 1996, pp. 85.