Nguyen Nhu Le

Main Article Content

Abstract

In this work, we examine cross sections for (α, γ) reactions on p-nuclei, including 90Zr, 121Sb, 151Eu, and 162Er at astrophysically relevant energies. By using our recently developed α optical model potential (α-OMP), the (α, γ) cross sections were calculated within six models of radiative strength functions (RSF) which consisted of the microscopic HFB-QRPA model based on the BSk-14 Skyrme force, the HF-BCS theory using Skyrme parameters, the EGLO model, SMLO model, the empirical SMLO (SMLOg) and global semi-microscopic (D1M-QRPAg) models. The numerical results is then compared to the measured data of (α, γ) cross sections. For the considered (α, γ) reactions, the EGLO, SMLO, and HFB results are typically greater than the measured data. In addition, the comparison has indicated that the RSF models of SMLOg and D1M-QRPAg best fit the measured data with rms smaller than 0.2 within our proposed α-OMP. Therefore, for the (α, γ) reactions on the selected targets, RSF models of SMLOg and D1M-QRPAg are strongly recommended. The results are significant for a further systematic examination to evaluate which RSF model is most appropriate for studying (α, γ) reactions on p-nuclei in general. 


 

Keywords: p-nuclei, α optical model potential, radiative strength function.

References

[1] A. G. W. Cameron, Stellar evolution, nuclear astrophysics, and nucleogenesis, Chalk River Report CRLD41, Technical Report, A.E.C.L. Chalk River, Canada, 1957
[2] E. M. Burbidge, G. R. Burbidge, W. A. Fowler, F. Hoyle, Synthesis of the elements in stars, Reviews of Modern Physics, Vol. 29, No. 4, 1957, pp. 547-108, https://doi.org/10.1103/RevModPhys.29.547.
[3] P. Mohr, G. Kiss, Z. Fulop, D. Galaviz, G. Gyurky, E. Somorjai, Elastic Alpha Scattering Experiments and the Alpha-Nucleus Optical Potential at Low Energies, Atomic Data and Nuclear Data Tables, Vol. 99, No. 6, 2013, pp. 651-679, https://doi.org/10.1016/j.adt.2012.10.003.
[4] C. Travaglio, F. K. Ropke, R. Gallino, W. Hillebrandt, Type Ia Supernovae as Sites of the P-process: Two-dDimensional Models Coupled to Nucleosynthesis, the Astrophysical Journal, Vol. 739, No. 2, 2011, pp. 93-19, https://iopscience.iop.org/article/10.1088/0004-637X/739/2/93.
[5] T. Rauscher, A. Heger, R. Hoffman, S. E. Woosley, Nucleosynthesis in Massive Stars with Improved Nuclear and Stellar Physics, The Astrophysical Journal, Vol. 576, No. 1, 2002, pp. 323-348, https://iopscience.iop.org/article/10.1086/341728.
[6] B. V. Kheswa et al., Galactic production of 138 138La: Impact of 138,139La statistical properties, Physics Letters B, Vol. 744, No. 11, 2015, pp. 268-272, https://doi.org/10.1016/j.physletb.2015.03.065.
[7] T. Rauscher, N. Nishimura, R. Hirschi, G. Cescutti, A. S. J. Murphy, A. Heger, Uncertainties in the Production of P Nuclei in Massive Stars Obtained from Monte Carlo variations, Monthly Notices of the Royal Astronomical Society, Vol. 463, No. 4, 2016, pp. 4153-4166, https://doi.org/10.1093/mnras/stw2266.
[8] T. Rauscher, G. G. Kiss, G. Gyurky, A. Simon, Z. Fulop, E. Somorjai, Suppression of the Stellar Enhancement Factor and the Reaction 85Rb(p,n)85Sr, Physical Review C, Vol. 80, No. 3, 2009, pp. 035801-12, https://doi.org/10.1103/PhysRevC.80.035801.
[9] P. Mohr, Z. Fulop, H. Utsunomiya, Photo-induced Nucleosynthesis: Current Problems and Experimental Approaches, The European Physical Journal A, Vol. 32, No. 3, 2007, pp. 357-69, https://doi.org/10.1140/epja/i2006-10378-y.
[10] M. Arnould, S.Goriely, The P-process of Stellar Nucleosynthesis: Astrophysics and Nuclear Physics Status, Physics Reports, Vol, 384, No. 1-2, 2003, pp. 1-84, https://doi.org/10.1016/S0370-1573(03)00242-4.
[11] S. Watanabe, High Energy Scattering of Deuterons By Complex Nuclei, Nuclear Physics, Vol. 8, 1958,
pp. 484-492, https://doi.org/10.1016/0029-5582(58)90180-9.
[12] N. Nhu Le, N. Quang Hung, Improved Version of the Α-nucleus Optical Model Potential for Reactions Relevant to the Γ-process, Physical Review C, Vol. 105, No. 1, 2022, pp. 014602-014609, https://doi.org/10.1103/PhysRevC.105.014602.
[13] V. Avrigeanu, M. Avrigeanu, C. Manailescu, Further Explorations of the Α-particle Optical Model Potential at Low Energies for the Mass Range, Physical Review C, Vol. 90, No. 4, 2014, pp. 044612-13, https://doi.org/10.1103/PhysRevC.90.044612.
[14] M. Avrigeanu, V. Avrigeanu, Α-Particle Optical Potential Tests Below the Coulomb Barrier, Physical Review C, Vol. 79, No. 2, 2009, pp. 027601-4, https://doi.org/10.1103/PhysRevC.79.027601.
[15] M. Avrigeanu, V. Avrigeanu, Α-particle Nuclear Surface Absorption Below the Coulomb Barrier in Heavy Nuclei, Physical Review C, Vol. 82, No. 1, 2010, pp. 014606-7, https://doi.org/10.1103/PhysRevC.82.014606.
[16] R. Capote et al., RIPL - Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluation, Nuclear Data Sheets, Vol. 110, No. 12, 2009, pp. 3107-3214, https://doi.org/10.1016/j.nds.2009.10.004.
[17] J. Kopecky, M. Uhl, R. E. Chrien, Radiative Strength in the Compound Nucleus 157Gd, Physical Review C,
Vol. 47, No. 1, 1993, pp. 312-11, https://doi.org/10.1103/PhysRevC.47.312.
[18] V. A. Plujko et al., Workshop on Photon Strength Functions Relate Topics, Prague, Czech Republic, 2008,
pp. 1-33.
[19] A Database Hosted at the IAEA Server, Www-Nds.Iaea.Org/Psfdatabase, 2022.
[20] S. Goriely et al., Reference Database for Photon Strength Functions, the European Physical Journal A, Vol. 55, No. 3, 2019, pp. 172-29, https://doi.org/10.1140/epja/i2019-12840-1.
[21] C. Mahaux, H. Ngo, G. R. Satchler, Causality and the Threshold Anomaly of the Nucleus-nucleus Potential, Nuclear Physics A, Vol. 449, No. 2, 1986, pp. 354-41, https://doi.org/10.1016/0375-9474(86)90009-6.
[22] H. Lu, A. Marchix, Y. Abe, D. Boilley, KEWPIE2: A Cascade Code for the Study of Dynamical Decay of Excited Nuclei, Computer Physics Communications, Vol. 200, 2016, pp. 381-19, https://doi.org/10.1016/j.cpc.2015.12.003.
[23] P. Descouvemont, An R-matrix Package for Coupled-channel Problems in Nuclear Physics, Computer Physics Communications, Vol. 200, 2016, pp. 199-21, https://doi.org/10.1016/j.cpc.2015.10.015.
[24] W. Reisdorf, Analysis of Fissionability Data at High Excitation Energies I. The Level Density Problem. Zeitschrift fur Physik A: Atoms and Nuclei, Vol. 300, No. 2, 1981, pp. 227-12, https://doi.org/10.1007/BF01412298.
[25] S. J. Quinn et al., (α,γ) Cross Section Measurements in the Region of Light P Nuclei, Physical Review C, Vol. 92, No. 4, 2015, pp. 045805-8, https://doi.org/10.1103/PhysRevC.92.045805.
[26] Z. Korkulu et al., Investigation of α-induced Reactions on Sb Isotopes Relevant to the Astrophysical Γ Process, Physical Review C, Vol. 97, No. 4, 2018, 045803-10, https://doi.org/10.1103/PhysRevC.97.045803.
[27] G. Gyurky, Z. Elekes, J. Farkas, Z. Fulop, Z. Halasz, G. G. Kiss, E. Somorjai, T. Szucs, R. T. Guray, N. Ozkan, Alpha-induced Reaction Cross Section Measurements on 151Eu for the Astrophysical Γ-process, Journal of Physics G, Vol. 37, No. 11, 2010, pp. 115201-16, https://doi.org/10.1088/0954-3899/37/11/115201.
[28] G. G. Kiss, T. Szucs, T. Rauscher, Zs. Torok, Zs. Fulop, Gy. Gyurky, Z. Halasz, E. Somorjai, Alpha Induced Reaction Cross Section Measurements on 162Er for the Astrophysical Gamma Process, Physics Letters B, Vol. 735, No. 40, 2014, pp. 40-44, https://doi.org/10.1016/j.physletb.2014.06.011.