Nambu-goldstone Modes in Two Segregated Bose-einstein Condensates Limited by Two Hard Walls
Main Article Content
Abstract
The Nambu-Goldstone (NG) modes in the system of two segregated Bose-Einstein condensates (BECs) limited by two hard walls are studied by means of the Gross-Pitaevskii (GP) theory. Based on the double-parabola approximation (DPA) combining with the Bogoliubov-de Gennes (BdG) equations we found four NG modes that proves the failure of the Watanabe-Brauner counting rule and, furthermore, their dispersion relations depend explicitly on the geometrical structure.
Keywords:
Bose-Einstein condensates, double-parabola approximation, interface, Nambu-Goldstone modes, Watanabe-Brauner counting rule.
References
J. Goldstone, A. Salam, S. Weinberg, Broken Symmetries, Phys. Rev. Vol. 127, No. 3, 1962, pp. 965-970, https://doi.org/10.1103/PhysRev.127.965.
C. P. Burgess, Goldstone and Pseudo-Goldstone Bosons in Nuclear, Particle and Condensed-Matter Physics, Phys. Rep, Vol. 330, No.4, 2000, pp. 193-261, https://doi.org/10.1016/S0370-1573(99)00111-8.
H. B. Nielsen, S. Chadha, On how to Count Goldstone Bosons, Nucl. Phys. B, Vol. 105, No. 3, 1976,
pp. 445- 453, https://doi.org/10.1016/0550-3213(76)90025-0.
I. Low, A. V. Manohar, Spontaneously Broken Spacetime Symmetries and Goldstone’s Theorem, Phys. Rev. Lett, Vol. 88, No. 10, 2002, pp. 1016021-1016024, https://doi.org/10.1103/PhysRevLett.88.101602.
V. A. Miransky, I. A. Shovkovy, Spontaneous Symmetry Breaking with Abnormal Number of Nambu-Goldstone Bosons and Kaon Condensate, Phys. Rev. Lett, Vol. 88, No. 11, 2002, pp. 1116011-1116014, https://doi.org/10.1103/PhysRevLett.88.111601.
Y. Nambu, Spontaneous Breaking of Lie and Current Algebras, J. Start. Phys, Vol. 115, No. 1/2, 2004, pp. 7-17, https://doi.org/10.1023/B:JOSS.0000019827.74407.2d.
T. Brauner, Spontaneous Symmetry Breaking and Nambu–Goldstone Bosons in Quantum Many-Body Systems, Symmetry, Vol. 2, No. 2, 2010, pp. 609-657, https://doi.org/10.3390/sym2020609.
H. Watanabe, T. Brauner, Spontaneous Breaking of Continuous Translational Invariance, Phys. Rev. D, Vol. 84, No. 8, 2012, pp. 0850101-08501014, https://doi.org/10.1103/PhysRevD.85.085010.
H. Watanabe, H. Murayama, Unified Description of Nambu-Goldstone Bosons without Lorentz Invariance, Phys. Rev. Lett, Vol. 108, No. 25, 2012, pp. 2516021-2516025, https://doi.org/10.1103/PhysRevLett.108.251602.
Y. Hidaka, Counting Rule for Nambu-Goldstone Modes in Nonrelativistic Systems, Phys. Rev. Lett, Vol. 110,
No. 9, 2013, pp. 0916011-0916015, https://doi.org/10.1103/PhysRevLett.110.091601.
H. Watanabe, H. Murayama, Redundancies in Nambu-Goldstone Bosons, Phys. Rev. Lett, Vol. 110, No. 18, 2013, pp. 1816011-1816015, https://doi.org/10.1103/PhysRevLett.110.181601.
T. Takeuchi, K. Kasamatsu, Nambu-Goldstone Modes in Segregated Bose-Einstein Condensates, Phys. Rev. A, Vol. 88, No. 4, 2013, pp. 0436121-0436125, https://doi.org/10.1103/PhysRevA.88.043612.
M. Nitta, D. Takahashi, Quasi-Nambu-Goldstone Modes in Nonrelativistic Systems, Physical Review D, Vol. 91, No. 2, 2015, pp. 0250181-02501814, https://doi.org/10.1103/PhysRevD.91.025018.
J. O. Indekeu, C. Y. Lin, N. V. Thu, B. V. Schaeybroeck, T. H. Phat, Static Interfacial Properties of Bose-Einstein-condensate Mixtures, Phys. Rev. A, Vol. 91, No. 3, 2015, pp. 0336151-03361510, https://doi.org/10.1103/PhysRevA.91.033615.
P. G. de Gennes, Superconductivity of Metals and Alloys, CRC Press, Florida, 2018.
K. Binder, Phase Transitions and Critical Phenomena, C. Domb, J. Lebowitz, Academic Press, London,
Vol. 81983.
R. Lipowsky, Critical Surface Phenomena at First-Order Bulk Transitions, Phys. Rev. Lett, Vol. 49, No. 21, 1982, pp. 1575-1578, https://doi.org/10.1103/PhysRevLett.49.1575.
K. Binder, In Phase Transitions and Critical Phenomena, ed. C. Domb and J. Lebowitz, Academic Press, London, Vol. 8, 1983, pp. 1.
S. Puri, H. L. Frisch, Surface-directed Spinodal Decomposition: Modelling and Numerical Simulations, J. Conds. Matter, Vol. 9, No. 10, 1997, pp. 2109-2133, https://doi.org/10.1088/0953-8984/9/10/003.
H. Furukawa, Role of Inertia in the Late Stage of the Phase Separation of A Fluid, Physica A, Vol. 204, No. 1, 1994, pp. 237-245, https://doi.org/10.1016/0378-4371(94)90428-6.
K. Binder, Spinodal Decomposition in Confined Geometry, J. Non-Equilib. Thermodyn, Vol. 23, No. 1, 1998,
pp. 1-44, https://doi.org/10.1515/jnet.1998.23.1.1.
S. Puri, Surface-directed Spinodal Decomposition, J. Phys. Condens. Matter, Vol. 17, No. 3, 2005, pp. 101-142, https://doi.org/10.1088/0953-8984/17/3/R01.
K. Binder, S. Puri, S. K. Das, J. Horbach, Phase Separation in Confined Geometries, J. Stat. Phys. Condens,
Vol. 138, No. 1, 2010, pp. 51-84, https://doi.org/10.1007/S10955-010-9924-9.
C. P. Burgess, Goldstone and Pseudo-Goldstone Bosons in Nuclear, Particle and Condensed-Matter Physics, Phys. Rep, Vol. 330, No.4, 2000, pp. 193-261, https://doi.org/10.1016/S0370-1573(99)00111-8.
H. B. Nielsen, S. Chadha, On how to Count Goldstone Bosons, Nucl. Phys. B, Vol. 105, No. 3, 1976,
pp. 445- 453, https://doi.org/10.1016/0550-3213(76)90025-0.
I. Low, A. V. Manohar, Spontaneously Broken Spacetime Symmetries and Goldstone’s Theorem, Phys. Rev. Lett, Vol. 88, No. 10, 2002, pp. 1016021-1016024, https://doi.org/10.1103/PhysRevLett.88.101602.
V. A. Miransky, I. A. Shovkovy, Spontaneous Symmetry Breaking with Abnormal Number of Nambu-Goldstone Bosons and Kaon Condensate, Phys. Rev. Lett, Vol. 88, No. 11, 2002, pp. 1116011-1116014, https://doi.org/10.1103/PhysRevLett.88.111601.
Y. Nambu, Spontaneous Breaking of Lie and Current Algebras, J. Start. Phys, Vol. 115, No. 1/2, 2004, pp. 7-17, https://doi.org/10.1023/B:JOSS.0000019827.74407.2d.
T. Brauner, Spontaneous Symmetry Breaking and Nambu–Goldstone Bosons in Quantum Many-Body Systems, Symmetry, Vol. 2, No. 2, 2010, pp. 609-657, https://doi.org/10.3390/sym2020609.
H. Watanabe, T. Brauner, Spontaneous Breaking of Continuous Translational Invariance, Phys. Rev. D, Vol. 84, No. 8, 2012, pp. 0850101-08501014, https://doi.org/10.1103/PhysRevD.85.085010.
H. Watanabe, H. Murayama, Unified Description of Nambu-Goldstone Bosons without Lorentz Invariance, Phys. Rev. Lett, Vol. 108, No. 25, 2012, pp. 2516021-2516025, https://doi.org/10.1103/PhysRevLett.108.251602.
Y. Hidaka, Counting Rule for Nambu-Goldstone Modes in Nonrelativistic Systems, Phys. Rev. Lett, Vol. 110,
No. 9, 2013, pp. 0916011-0916015, https://doi.org/10.1103/PhysRevLett.110.091601.
H. Watanabe, H. Murayama, Redundancies in Nambu-Goldstone Bosons, Phys. Rev. Lett, Vol. 110, No. 18, 2013, pp. 1816011-1816015, https://doi.org/10.1103/PhysRevLett.110.181601.
T. Takeuchi, K. Kasamatsu, Nambu-Goldstone Modes in Segregated Bose-Einstein Condensates, Phys. Rev. A, Vol. 88, No. 4, 2013, pp. 0436121-0436125, https://doi.org/10.1103/PhysRevA.88.043612.
M. Nitta, D. Takahashi, Quasi-Nambu-Goldstone Modes in Nonrelativistic Systems, Physical Review D, Vol. 91, No. 2, 2015, pp. 0250181-02501814, https://doi.org/10.1103/PhysRevD.91.025018.
J. O. Indekeu, C. Y. Lin, N. V. Thu, B. V. Schaeybroeck, T. H. Phat, Static Interfacial Properties of Bose-Einstein-condensate Mixtures, Phys. Rev. A, Vol. 91, No. 3, 2015, pp. 0336151-03361510, https://doi.org/10.1103/PhysRevA.91.033615.
P. G. de Gennes, Superconductivity of Metals and Alloys, CRC Press, Florida, 2018.
K. Binder, Phase Transitions and Critical Phenomena, C. Domb, J. Lebowitz, Academic Press, London,
Vol. 81983.
R. Lipowsky, Critical Surface Phenomena at First-Order Bulk Transitions, Phys. Rev. Lett, Vol. 49, No. 21, 1982, pp. 1575-1578, https://doi.org/10.1103/PhysRevLett.49.1575.
K. Binder, In Phase Transitions and Critical Phenomena, ed. C. Domb and J. Lebowitz, Academic Press, London, Vol. 8, 1983, pp. 1.
S. Puri, H. L. Frisch, Surface-directed Spinodal Decomposition: Modelling and Numerical Simulations, J. Conds. Matter, Vol. 9, No. 10, 1997, pp. 2109-2133, https://doi.org/10.1088/0953-8984/9/10/003.
H. Furukawa, Role of Inertia in the Late Stage of the Phase Separation of A Fluid, Physica A, Vol. 204, No. 1, 1994, pp. 237-245, https://doi.org/10.1016/0378-4371(94)90428-6.
K. Binder, Spinodal Decomposition in Confined Geometry, J. Non-Equilib. Thermodyn, Vol. 23, No. 1, 1998,
pp. 1-44, https://doi.org/10.1515/jnet.1998.23.1.1.
S. Puri, Surface-directed Spinodal Decomposition, J. Phys. Condens. Matter, Vol. 17, No. 3, 2005, pp. 101-142, https://doi.org/10.1088/0953-8984/17/3/R01.
K. Binder, S. Puri, S. K. Das, J. Horbach, Phase Separation in Confined Geometries, J. Stat. Phys. Condens,
Vol. 138, No. 1, 2010, pp. 51-84, https://doi.org/10.1007/S10955-010-9924-9.