Influence of Calcium on the Structure and Hydrophilic of CaTiO3 Coating on Titanium Implants
Main Article Content
Abstract
Calcium titanate (CaTiO3), a multi-metal oxide has received extensive attention in recent years, due to its unique structural features, high chemical stability, strong catalytic activity, inexpensiveness, low toxicity, and easy synthesis. In this work, we have focused our research on and investigated the influence of Ca weight on the microstructure and properties of CaTiO3 films. CaTiO3 films on TiO2 nanotube templates were synthesized using hydrothermal method at 200 oC for 24 h. The TiO2 template was synthesized by anodizing using a Ti plate. The synthesized materials were analyzed on their crystal phase, surface morphology, Raman characterization, surface roughness, and hydrophilic properties by X-ray diffraction (XRD), Raman, scanning electron microscopy (SEM), 3D optical Profilometer, and contact angle measurement. The synthesized film exhibited a morphological transformation from nanotube morphology to nanopillars. Notably, the hydrophilic properties and the surface roughness of the CaTiO3 films were altered after hydrothermal treatment of the TiO2 nanotube template. These findings could potentially lead to the development of highly efficient materials for use in biomedical implants.
References
[2] M. Manso, M. Langlet, J. M. M. Duart, Testing Sol-gel CaTiO3 Coatings for Biocompatible Applications, Mater. Sci. Eng. C, Vol. 23, 2003, pp. 447-450, https//doi.org/10.1016/S0928-4931(02)00319-3.
[3] S. Holliday, A. Stanishevsky, Crystallization of CaTiO3 by Sol-gel Synthesis and Rapid Thermal Processing, Surf. Coatings Technol, Vol. 188-189, 2004, pp. 741-744, https//doi.org/10.1016/j.surfcoat.2004.07.044.
[4] X. Zhang, J. Zhang, X. Ren, X. J. Wang, The Dependence of Persistent Phosphorescence on Annealing Temperatures in CaTiO3:Pr3+ Nanoparticles Prepared by A Coprecipitation Technique, J. Solid State Chem,
Vol. 181, 2008, pp. 393-398, https//doi.org/10.1016/j.jssc.2007.11.022.
[5] M. Muthuraman, K. C. Patil, S. Senbagaraman, A. M. Umarji, Sintering, Microstructural and Dilatometric Studies of Combustion Synthesized Synroc Phases, Mater. Res. Bull, Vol. 31, 1996, pp. 1375-1381, https//doi.org/10.1016/0025-5408(96)00131-6.
[6] T. R. N. Kutty, R. Vivekanandan, P. Murugaraj, Precipitation of Rutile and Anatase (TiO2) Fine Powders and their Conversion to MTiO3 (M = Ba, Sr, Ca) by the Hydrothermal Method, Mater. Chem. Phys, Vol. 19, 1988,
pp. 533-546, https//doi.org/10.1016/0254-0584(88)90045-4.
[7] C. Karthikeyan, M. Thamima, S. Karuppuchamy, Structural and Photocatalytic Property of CaTiO3 Nanosphere, Mater. Sci. Foru, Vol. 979, 2020, 169-174, https//doi.org/10.4028/www.scientific.net/MSF.979.169.
[8] C. L. Huang, C. L. Pan, S. J. Shium, Liquid Phase Sintering of MgTiO3-CaTiO3 Microwave Dielectric Ceramics, Mater. Chem. Phys, Vol. 78, 2003, pp. 111-115, https//doi.org/10.1016/S0254-0584(02)00311-5.
[9] J. Li, Y. Wang, X. Yang, H. Kang, Z. Cao, X. Jiang, Z. Chen, E. Guo, T. Wang, Processing Bulk Insulating CaTiO3 into A High-performance Thermoelectric Material, Chem. Eng. J, Vol. 428, 2022, pp. 131121, https//doi.org/10.1016/j.cej.2021.131121.
[10] Y. Yan, H. Yang, X. Zhao, R. Li, X. Wang, Enhanced Photocatalytic Activity of Surface Disorder-engineered CaTiO3, Mater. Res. Bull, Vol. 105, 2018, pp. 286-290, https//doi.org/10.1016/j.materresbull.2018.05.008.
[11] T. Soltani, X. Zhu, A. Yamamoto, S. P. Singh, E. Fudo, A. Tanaka, H. Kominami, H. Yoshida, Effect of Transition Metal Oxide Cocatalyst on the Photocatalytic Activity of Ag loaded CaTiO3 for CO2 Reduction with Water and Water Splitting, Appl. Catal. B Environ, Vol. 286, 2021, pp. 119899, https//doi.org/10.1016/j.apcatb.2021.119899.
[12] H. Chouirfa, H. Bouloussa, V. Migonney, C. F. Daudré, Review of Titanium Surface Modification Techniques and Coatings for Antibacterial Applications, Acta Biomater, Vol. 83, 2019, pp. 37-54, https//doi.org/10.1016/j.actbio.2018.10.036.
[13] A. K. Dubey, B. Basu, K. Balani, R. Guo, A. S. Bhalla, Multifunctionality of Perovskites BaTiO3 and CaTiO3 in A Composite with Hydroxyapatite as Orthopedic Implant Materials, Integr. Ferroelectr, Vol. 131, 2011,
pp. 119-126, https//doi.org/10.1080/10584587.2011.616425.
[14] M. Li, M. J. Mondrinos, X. Chen, M. R. Gandhi, F. K. Ko, P. I. Lelkes, Elastin Blends for Tissue Engineering Scaffolds, J. Biomed. Mater. Res. Part A, Vol. 79, 2006, pp. 963-973, https//doi.org/10.1002/jbm.a.
[15] G. Gralik, C. Zanelli, F. R. Pereira, M. Dondi, J. A. Labrincha, D. Hotza, Formation and Quantification of Calcium Titanate with the Perovskite Structure from Alternative Sources of Titanium, 21 CBECIMAT - Congr. Bras. Eng. E Ciência Dos Mater, 09 a 13 Novembro 2014, Cuiabá, MT, Bras. 2014, pp. 503-510, Available: http://www.metallum.com.br/21cbecimat/CD/PDF/104-016.pdf (accessed on: February 8th, 2023).
[16] J. Wei, T. Igarashi, N. Okumori, T. Igarashi, T. Maetani, B. Liu, M. Yoshinari, Influence of Surface Wettability on Competitive Protein Adsorption and Initial Attachment of Osteoblasts, Biomed. Mate., Vol. 4, 2009,
pp. 045002, https//doi.org/10.1088/1748-6041/4/4/045002.
[17] S. Ban, Effect of Alkaline Treatment of Pure Titanium and Its Alloys on the Bonding Strength of Dental Veneering Resins, J. Biomed. Mater. Res. - Part A, Vol. 66, 2003, pp. 138-145, https//doi.org/10.1002/jbm.a.10566.
[18] F. Hamzah, Surface Characterization on Alkali-Heat-Treatment on Titanium Alloy, Malaysian J. Anal. Sci,
Vol. 20, 2016, pp. 1429-1436, https//doi.org/10.17576/mjas-2016-2006-23.
[19] D. L. Morgan, Alkaline Hydrothermal Treatment of Titanate, PhD Thesis, Queensland University of Technology, 2010.
[20] Y. Li, S. Qin, F. Seifert, Phase Transitions in A-site Substituted Perovskite Compounds: The (Ca1-2xNaxLax)TiO3 (0≤x≤0.5) Solid Solution, J. Solid State Chem, Vol. 180, 2007, pp. 824-833,
https//doi.org/10.1016/j.jssc.2006.12.012.
[21] M. L. Moreira, E. C. Paris, G. S. D. Nascimento, V. M. Longo, J. R. Sambrano, V. R. Mastelaro, M. I. B. Bernardi, J. Andrés, J. A. Varela, E. Longo, Structural and Optical Properties of Catio3 Perovskite-based Materials Obtained by Microwave-assisted Hydrothermal Synthesis: An Experimental and Theoretical Insight, Acta Mater, Vol. 57, 2009, pp. 5174-5185, https//doi.org/10.1016/j.actamat.2009.07.019.
[22] H. Zheng, I. M. Reaney, G. D. C. C. D. Györgyfalva, R. Ubic, J. Yarwood, M. P. Seabra, V. M. Ferreira, Raman Spectroscopy of CaTiO3-based Perovskite Solid Solutions, J. Mater. Res, Vol. 19, 2004, pp. 488-495, https//doi.org/10.1557/jmr.2004.0059.
[23] P. McMillan, N. Ross, The Raman Spectra of Several Orthorhombic Calcium Oxide Perovskites, Phys. Chem. Miner, Vol. 16, 1988, pp. 21-28, https//doi.org/10.1007/BF00201326.
[24] S. Qin, X. Wu, F. Seifert, A. I. Becerro, Micro-Raman Study of Perovskites in the CaTiO3-SrTiO3 System,
J. Chem. Soc. Dalt. Trans., Vol. 2002, pp. 3751-3755, https//doi.org/10.1039/b207228a.
[25] P. Gillet, F. Guyot, G. D. Price, B. Tournerie, A. Le Cleach, Phase Changes and Thermodynamic Properties pf Catio3, Spectroscopic Data, Vibrational Modelling and Some Insights on the Properties of MgSiO3 Perovskite, Phys. Chem. Miner, Vol. 20, 1993, pp. 159-170, https//doi.org/10.1007/BF00200118.
[26] D. E. M. Donald, B. E. Rapuano, H. C. Schniepp, Surface Oxide Net Charge of A Titanium Alloy: Comparison Between Effects of Treatment with Heat or Radiofrequency Plasma Glow Discharge, Colloids Surfaces B Biointerfaces, Vol. 82, 2011, pp. 173-181, https//doi.org/10.1016/j.colsurfb.2010.08.031.
[27] M. Passi, B. Pal, A Review on Catio3 Photocatalyst: Activity Enhancement Methods and Photocatalytic Applications, Powder Technol, Vol. 388, 2021, pp. 274-304, https//doi.org/10.1016/j.powtec.2021.04.056.