The High Energy Scattering Amplitude One-loop Gravitation in the Effective Field Theory
Main Article Content
Abstract
In this work, the Newton potential, together with the low-key corrective energy, an attractive loop of two large non-relativistic masses has been found. The asymptotic behavior of the scattering amplitude for two scalar particles at high energies with fixed momentum transfers was studied in the one-loop gravitation effective field theory.
Keywords:
Eikonal scattering theory, one loop effective gravitation field theory.
References
[1] B. Bohr, N. E. J. Donoghue, J. F. Holstein, Quantum Gravitational Corrections to the Nonrelativistic Scattering Potential of Two Masses, Physical Review D, Vol. 67, No. 8, 2003, pp. 1-12, https//doi.org/10.1103/physrevd.67.084033.
[2] Y. P. Iwasaki, Quantum Theory of Gravitation vs. Classical Theory Fourth - Order Potential, Progress of Theoretical Physics, Vol. 46, No. 5, 1971, pp. 1587-1609, https://doi.org/10.1143/PTP.46.1587.
[3] Hamber, H. W. Liu, on the Quantum Corrections to the Newtonian Potential, Physics Letters B, Vol. 357, No. 1-2, 1995, pp. 51-56, https//doi.org/10.1016/0370-2693(95)00790-r.
[4] Gribuk, T. S. Kazakov, K. A. Pronin, Gauge Dependence of the Effective Gravitational Field, Theoretical and Mathematical Physics, Vol. 141, No. 3, 2004, pp. 1654-1669, https//doi.org/10.1023/b: tamp.0000049760.331.
[5] Kazakov, K. A. Pronin, Gauge Independent Effective Gauge Fields, Nuclear Physics B, Vol. 573, No. 1-2, 2000, pp. 536-552, https//doi.org/10.1016/s0550-3213(99)00654-9.
[6] T. Hooft, on the Factorization of Universal Poles in a Theory of Gravitating Point Particles, Nuclear Physics B, Vol. 304, 1988, pp. 867-876, https//doi.org/10.1016/0550-3213(88)90659-1.
[7] D. Amati, M. Ciafaloni, G. Veneziano, Superstring Collisions at Planckian Energies, Physics Letters B, Vol. 197, No. 1-2, 1987, pp. 81-88, https//doi.org/10.1016/0370-2693(87)90346-7.
[8] D. Amati, M. Ciafaloni, G. Veneziano, Towards an S-matrix Description of Gravitational Collapse, Journal of High Energy Physics, Vol. 2008, No. 2, 2008, pp. 049-049, https//doi.org/10.1088/1126-6708/2008/02/049.
[9] N. S. Han, Straight-line Path Approximation for High Energy Elastic and Inelastic Scattering in Quantum Gravity, the European Physical Journal C, Vol. 16, No. 3, 2000, pp. 547-553, https//doi.org/10.1007/s100520000328.
[10] N. S. Han, N. N. Xuan, Planck Scattering Beyond the Eikonal Approximation in the Functional Approach, The European Physical Journal C - Particles and Fields, Vol. 24, No. 4, 2002, pp. 643-651, https//doi.org/10.1007/s10052-002-0962-6.
[11] A. A. Logunov, A. N. Tavkhelidze, Quasi-optical Approach in Quantum Field Theory, Il Nuovo Cimento, Vol. 29, No. 2, 1963, pp. 380-399, https//doi.org/10.1007/bf02750359.
[12] N. V. Hieu, R. N. Faustov, Quasi-optical Potential in Quantum Field Theory, Nuclear Physics, Vol. 53, 1964,
pp. 337-344, https//doi.org/10.1016/0029-5582(64)90612-1.
[13] N. S. Han, L. T. H. Yen, N. N. Xuan, Nguyen, High Energy Scattering in the Quasi-Potential Approach. International Journal of Modern Physics A, Vol. 27, No. 1, 2012, pp. 1250004, https//doi.org/10.1142/s0217751x12500042.
[14] N. S. Han, N. N. Xuan, V. T. Thang, Applying the Modified Pertubation Theory to High Energy Scattering in the Quasipotential Approach, Journal of Physical Science and Application, Vol. 7, No. 4, 2017, pp. 47-58, https//doi.org/10.17265/2159-5348/2017.04.006.
[2] Y. P. Iwasaki, Quantum Theory of Gravitation vs. Classical Theory Fourth - Order Potential, Progress of Theoretical Physics, Vol. 46, No. 5, 1971, pp. 1587-1609, https://doi.org/10.1143/PTP.46.1587.
[3] Hamber, H. W. Liu, on the Quantum Corrections to the Newtonian Potential, Physics Letters B, Vol. 357, No. 1-2, 1995, pp. 51-56, https//doi.org/10.1016/0370-2693(95)00790-r.
[4] Gribuk, T. S. Kazakov, K. A. Pronin, Gauge Dependence of the Effective Gravitational Field, Theoretical and Mathematical Physics, Vol. 141, No. 3, 2004, pp. 1654-1669, https//doi.org/10.1023/b: tamp.0000049760.331.
[5] Kazakov, K. A. Pronin, Gauge Independent Effective Gauge Fields, Nuclear Physics B, Vol. 573, No. 1-2, 2000, pp. 536-552, https//doi.org/10.1016/s0550-3213(99)00654-9.
[6] T. Hooft, on the Factorization of Universal Poles in a Theory of Gravitating Point Particles, Nuclear Physics B, Vol. 304, 1988, pp. 867-876, https//doi.org/10.1016/0550-3213(88)90659-1.
[7] D. Amati, M. Ciafaloni, G. Veneziano, Superstring Collisions at Planckian Energies, Physics Letters B, Vol. 197, No. 1-2, 1987, pp. 81-88, https//doi.org/10.1016/0370-2693(87)90346-7.
[8] D. Amati, M. Ciafaloni, G. Veneziano, Towards an S-matrix Description of Gravitational Collapse, Journal of High Energy Physics, Vol. 2008, No. 2, 2008, pp. 049-049, https//doi.org/10.1088/1126-6708/2008/02/049.
[9] N. S. Han, Straight-line Path Approximation for High Energy Elastic and Inelastic Scattering in Quantum Gravity, the European Physical Journal C, Vol. 16, No. 3, 2000, pp. 547-553, https//doi.org/10.1007/s100520000328.
[10] N. S. Han, N. N. Xuan, Planck Scattering Beyond the Eikonal Approximation in the Functional Approach, The European Physical Journal C - Particles and Fields, Vol. 24, No. 4, 2002, pp. 643-651, https//doi.org/10.1007/s10052-002-0962-6.
[11] A. A. Logunov, A. N. Tavkhelidze, Quasi-optical Approach in Quantum Field Theory, Il Nuovo Cimento, Vol. 29, No. 2, 1963, pp. 380-399, https//doi.org/10.1007/bf02750359.
[12] N. V. Hieu, R. N. Faustov, Quasi-optical Potential in Quantum Field Theory, Nuclear Physics, Vol. 53, 1964,
pp. 337-344, https//doi.org/10.1016/0029-5582(64)90612-1.
[13] N. S. Han, L. T. H. Yen, N. N. Xuan, Nguyen, High Energy Scattering in the Quasi-Potential Approach. International Journal of Modern Physics A, Vol. 27, No. 1, 2012, pp. 1250004, https//doi.org/10.1142/s0217751x12500042.
[14] N. S. Han, N. N. Xuan, V. T. Thang, Applying the Modified Pertubation Theory to High Energy Scattering in the Quasipotential Approach, Journal of Physical Science and Application, Vol. 7, No. 4, 2017, pp. 47-58, https//doi.org/10.17265/2159-5348/2017.04.006.