Cao Thi Vi Ba, Nguyen Thu Huong, Tran Khuong Duy, Nguyen Thi Thanh Nhan

Main Article Content

Abstract

The Nernst effect has been theoretically studied in compositional superlattice in the presence of a strong electromagnetic wave. Using the quantum kinetic equation for electrons with two cases electrons-acoustic phonons scattering and electrons-optical phonons scattering, we obtained the analytic expression of the Nernst coefficient and kinetic tensors as a function of the magnetic field, temperature, frequency, and amplitude of the electromagnetic wave and parameters of the compositional superlattice. The dependence of the Nernst coefficient on the magnetic field and temperature is achieved by numerical calculations for AlGa/AlGaAs material. The result indicates that in the case of electron-acoustic phonon scattering, the Shubnikov-de Hass oscillation appears. Whereas, in the case of electrons-optical phonons scattering, the peak of magneto-photon-phonon resonance appears. In both cases, when temperature increases, the Nernst coefficient decreases rapidly, and for electrons-optical phonons scattering, the resonance peak has a movement.


 

Keywords: Nernst effect, compositional superlattice, quantum kinetic equation, electron-phonon scattering, Shubnikov-de Hass oscillaton.

References

[1] A. V. Ettingshausen, W. Nernst, Annalen Der Physik, Vol. 265, 1886, pp. 343-347, https://doi.org/10.1002/andp.18862651010.
[2] E. Sondheimer, Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences,
Vol. 193, 1948, pp. 484-512, https://doi.org/10.1098/rspa.1948.0058.
[3] B. V. Paranjape, J. S. Levinger, Theory of the Ettingshausen Effect in Semicondctors, Physical Review, Vol. 120, No. 2, 1960, pp. 437, https://doi.org/10.1103/PhysRev.120.437.
[4] Z. Zhu, H. Yang, B. Fauque, Y. Kopelevich, K. Behnia, Nernst Effect and Dimensionality in the Quantum Limit, Nature Physics, Vol. 6, 2010, pp. 26-29, https://doi.org/10.1038/nphys1437.
[5] I. Lyapilin, The Nernst Spin Effect in a Two-Dimensional Electron Gas, Low Temperature Physics, 39, 2013,
pp. 957–960, https://doi.org/10.1063/1.4830264.
[6] S. Figarova, H. Huseynov, V. Figarov, Transverse Nernst–Ettingshausen Effect in Superlattices Upon Electron-Phonon Scattering, Semiconductors, Vol. 52, 2018, pp. 853-858, https://doi.org/10.1134/S1063782618070084.
[7] H. Y. Zhou, S. W. Gu, Effect of Magnetopalaron in Cylindrical Quantum Wires, Solid State Communications, Vol. 88, 1993, pp. 291-294.
[8] Y. B. Yu, S. N. Zhu, K. X. Guo, Electron-Phonon Interaction Effect on Optical Absorption in Cylindrical Quantum Wires, Solid State Communications, Vol. 139, 2006, pp. 76-79, https://doi.org/10.1016/j.ssc.2006.04.009.
[9] H. V. Ngoc, N. Q. Bau, D. M. Quang, H. T. Hung, One-Dimensional Cylindrical Quantum Wire: The Theoretical Study of Photo-Stimulated Ettingshausen Effect, International Journal of Modern Physics B, Vol. 36, No. 01, 2020, pp. 2250009, https://doi.org/10.1142/S0217979222500096.
[10] N. Q. Bau, D. T. Long, Influence of Confined Optical Phonons and Laser Radiation on the Hall Effect in A Compositional Superlattice, Physica B: Condensed Matter, Vol. 532, 2018, pp. 149-154, https://doi.org/10.1016/j.physb.2017.09.127.
[11] N.Q. Bau, D.T. Long, Impact of Confined LO-phonons on the Hall Effect in Doped Semiconductor Superlattices, Journal of Science: Advanced Materials and Devices, Vol. 1, 2016, pp. 209-213, https://doi.org/10.1016/j.jsamd.2016.06.010.
[12] C. R. Bennett, K. Gu ̈ven, B. Tanatar, Confined-phonon Effects in the Band-Gap Renormalization of Semiconductor Quantum Wires, Physical Review B, Vol. 57, No. 7, 1998, pp. 3994, https://doi.org/10.1103/PhysRevB.57.3994.
[13] N. Q. Bau, N . T. L. Quynh, C. T. V. Ba, L. T. Hung, Doped Two-dimensional Semiconductor Superlattice: Photo- stimulated Quantum Thermo-magnetoelectric Effects under the Influence of a Confined Phonon, Journal of the Korean Physical Society,Vol. 77, No. 12, 2020, pp. 1224-1232, https://doi.org/10.3938/jkps.77.1224.
[14] N. Q. Bau, T. T. Dien, N. T. N. Anh, N. D. Nam, Influence of Confined Optical Phonons on the Photo-stimulated Thermo-magnetoelectric Effect in Cylindrical Quantum Wires, Physica B: Condensed Matter, Vol. 644, 2022,
pp. 414220, https://doi.org/10.1016/j.physb.2022.414220.
[15] É. Épshtein, Theory of Magnetoresistive and Thermomagnetic Effects with Electron Scattering by Optical Phonons in Semiconductors, Soviet Physics Journal, Vol. 19, 1976, pp. 226-230, https://doi.org/10.1007/BF00942873.
[16] S. V. Branis, G. Li, K. K. Bajaj, Hydrogenic Impurities in Quantum Wires in the Presence of a Magnetic Field, Physical Review B, Vol. 47, Iss. 3, 1993, pp. 1316-1323, https://journals.aps.org/prb/issues/47/3.
[17] M. Abromowitz, I. A. Stegun, Handbook of Mathematical Functions, NBS (now NIST), 1965, pp. 537-554.
[18] N. Q. Bau, T. C. Phong, Parametric Resonance of Acoustic and Optical Phonons in a Quantum Well, Journal of the Korean Physical Society, Vol. 42, Iss. 5, 2003, pp. 647-651, https://www.jkps.or.kr/journal/view.html?uid=5315&vmd=Full (accessed on: June 1st, 2023).
[19] N. C. Constantinou, B. K. Ridley, Interaction of Electrons with the Confined LO Phonons of a Free-standing GaAs Quantum Wire, Physical Review B, Vol. 41, 1990, pp. 10622-10626, https://doi.org/10.1103/PhysRevB.41.10622.
[20] X. F. Wang, X. L. Lei, Polar-optic Phonons and High-field Electron Transport in Cylindrical GaAs/AlAs Quantum Wires, Physical Review B, Vol. 49, 1994, pp. 4780-4789, https://doi.org/10.1103/PhysRevB.49.4780.
[21] A. Zou, H. Xie, Effects of Confined LO and SO Phonon Modes on Polaron in Freestanding Cylindrical Quantum Wire with Parabolic Confinement, Modern Physics Letters B, Vol. 23, 2009, pp. 3515-3523, https://doi.org/10.1142/S0217984909021570.
[22] H. D. Trien, N. Q. Bau, The Nonlinear Absorption Coefficient of Strong Electromagnetic Waves caused by Electrons Confined in Quantum Wires, Journal of the Korean Physical Society, Vol. 56, 2010, pp. 120-127, https://doi.org/10.3938/jkps.56.120.
[23] W. R. Frank, A. O. Govorov, J. P. Kotthaus, C. Steinebach, V. Gudmundsson, W. Hansen, M. Holland, Phys. Rev. B, Vol, 55, 1997, pp. 6719-6722, https://doi.org/10.1103/PhysRevB.55.R1950.
[24] J.O. Ryu, R. O’connell, Magnetophonon Resonances in Quasi-one-dimensional Quantum Wires, Phys Rev B,
Vol. 48, 1993, pp. 9126-9129, https://doi.org/10.1103/PhysRevB.48.9126.
[25] H. V. Phuc, L. T. M. Hue, L. Dinh, T. C. Phong, LO-phonon-assisted Cyclotron Resonancelinewidth Via Multiphoton Absorption Processin Cylindrical Quantum Wire, Superlattices and Microstructures, Vol. 60, 2013, pp. 508-515, https://doi.org/10.1016/j.spmi.2013.05.038.
[26] N. Q. Bau, D. T. Hang, D. T. Long, Study of the Quantum Magneto-Thermoelectric Effect in the Two-Dimensional Compositional Superlattice GaAs/AlGaAs under the Influence of an Electromagnetic Wave by Using the Quantum Kinetic Equation, Journal of the Korean Physical Society, Vol. 75, No. 12, 2019, pp. 1004-1016, https://doi.org/10.3938/jkps.75.1004.