Le Thi Tam, Vu Dao Kien, Ta Quoc Tuan, Le Van Toan, Pham Thai Mai Phuong, Pham Hung Vuong

Main Article Content

Abstract

In this study, strontium substituted hydroxyapatite (SrHA) was successfully deposited onto etched titanium substrates in H2SO4 and HCl solution. The deposition was achieved by hydrothermal method by immersing the substrates in a solution containing Ca(NO3)2.4H2O, NH4H2PO4, and 5% Sr(NO3)2, followed by heating at 200°C for 12 hours. X-ray diffraction (XRD) analysis confirmed that all SrHA coatings exhibited a crystalline hydroxyapatite structure. Field-emission scanning electron microscopy (FE-SEM) revealed that the microstructure of the SrHA coatings exhibited. Bioactivity and in vitro biocompatibility testing of the SrHA-coated titanium substrates using SBF solution and baby hamster kidney (BHK) cells demonstrated positive results.


 


 


 

Keywords: Hydroxyapatite, Hydrothermal, Strontium substituted hydroxyapatite, Cell attachment, Implant.

References

This research was funded by the Ministry of Education and Training (MOET) under grant number CT2022.03.BKA.04.
References
[1] S. Prasad, M. Ehrensberger, M. P. Gibson, H. Kim, E. A. Monaco, Biomaterial Properties of Titanium in Dentistry, Journal of Oral Biosciences, Vol. 57, No. 4, 2015, pp. 192-199, https://doi.org/10.1016/j.job.2015.08.001.
[2] M. Prakasam, J. Locs, K. S. Ancane, D. Loca, A. Largeteau, L. B. Cimdina, Biodegradable Materials and Metallic Implants-A Review, Journal of Functional Biomaterials, Vol. 8, No. 4, 2017, pp. 44-59, https://doi.org/10.3390/jfb8040044.
[3] M. Esposito, Y. Ardebili, W. Hv, Interventions for Replacing Missing Teeth: Different Types of Dental Implants, The Cochrane Library, 2003, pp. 1-117, https://doi.org/10.1002/14651858.CD003815.pub4.
[4] I. Lundstrgm, Physico-chemical Considerations of Titanium as a Biomaterial, Clinical Materials, Vol. 9, No. 2, 1992, pp. 115-134, https://doi.org/10.1016/0267-6605(92)90056-y.
[5] R. R. Wang, A. Fenton, Titanium for Prosthodontic Applications: A Review of the Literature, Quintessence International, Vol. 27, No. 6, 1996, pp. 401-408, https://doi.org/10.1016/j.heliyon.2022.e11300.
[6] X. Liu, P. K. Chu, C. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials fFor Biomedical Applications, Materials Science and Engineering R: Reports, Vol. 47, 2004, pp. 49-121, https://doi.org/10.1016/j.mser.2004.11.001.
[7] J. Tormanen, O. Tervonen, A. Koivula, J. Junila, L. Suramo, Image Technique Optimization in MR Imaging of a Titanium Alloy Joint Prosthesis, JMRI, Vol. 5, No. 5, 1996, pp. 805-811, https://doi.org/10.1002/jmri.1880060515.
[8] N. L. Valverde, J. F. Fraile, J. M. Ramírez, B. M. D. Sousa, S. H. Hernández, A. L. Valverde, Bioactive Surfaces Vs. Conventional Surfaces in Titanium Dental Implants: A Comparative Systematic Review, Journal of Clinical Medicine, Vol. 9, No. 7, 2020, pp. 1-28, https://doi.org/10.3390/jcm9072047.
[9] M. S. Safavi, F. C.Walsh, M. A. Surmeneva, R. A. Surmenev, J. K. Allafi, Electrodeposited Hydroxyapatite-Based Biocoatings: Recent Progress and Future Challenges, Coatings, Vol. 11, No 1, 2021, pp. 1-62, https://doi.org/10.3390/coatings11010110.
[10] M. Geetha, A. K. Singh, R Asokamani, A. K . Gogia, Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants - A Review, in Progress in Materials Science, Vol. 54, No. 3, 2009, pp. 397-425, https://doi.org/10.1016/j.pmatsci.2008.06.004.
[11] N. Kittur, R. Oak, D. Dekate, S. Jadhav, P. Dhatrak, Dental Implant Stabilitya Its Measurements to Improve Osseointegration at the Bone-Implant Interface: A Review, Materials Today: Proceedings, Vol. 43, 2020,
pp. 1064-1070, https://doi.org/10.1016/j.matpr.2020.08.243.
[12] S. O. R. Sheykholeslami, J. K. Allafi, L. Fathyunes, Preparation, Characterization, and Corrosion Behavior of Calcium Phosphate Coating Electrodeposited on the Modified Nanoporous Surface of NiTi Alloy for Biomedical Applications, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, Vol. 49, No. 11, pp. 20185878-5887, https://doi.org/10.1007/s11661-018-4847-1.
[13] D. L. Cochran, R. K. Schenk, A Lussi, F. L. Higginbottom, D. Buser, Bone Response to Unloaded and Loaded Titanium Implants with A Sandblasted And Acid-Etched Surface: A Histometric Study in the Canine Mandible. J Biomed Mater Res, Vol. 40, 1998, pp. 1-11, https://doi.org/10.1002/(sici)1097-4636(199804)40:1%3C1::aid-jbm1%3E3.0.co;2-q.
[14] A. Palmquist, O. M. Omar, M. Esposito, J. Lausmaa, P. Thomsen, Titanium Oral Implants: Surface Characteristics, Interface Biology and Clinical Outcome, Journal of the Royal Society Interface, Vol. 7, No. 5, 2010, pp. S515-S527, https://doi.org/10.1098/rsif.2010.0118.focus.
[15] P. Amaravathy, S. Sathyanarayanan, S. Sowndarya, N. Rajendran, 2014, Bioactive HA/TiO2 Coating on Magnesium Alloy for Biomedical Applications, Ceramics International, Vo. 40, No. 5, pp. 6617-6630, https://doi.org/10.1016/j.ceramint.2013.11.119.
[16] M. Yoshinari, Y. Oda, T. Inoue, K. Matsuzaka, M. Shimono, Bone Response to Calcium Phosphate-Coated and Bisphosphonate-Immobilized Titanium Implants, Biomaterials, Vol. 23, 2002, https://doi.org/10.1016/s0142-9612(01)00415-x.
[17] S. Kimiyasu, Mechanism of Hydroxyapatite Mineralization in Biological Systems, Journal of the Ceramic Society of Japan, Vol. 115, No. 1338, 2007, pp. 124-130, https://doi.org/10.2109/jcersj.115.124.
[18] M. Aminzare, A. Eskandari, M. H. Baroonian, A. Berenov, Z. R. Hesabi, M. Taheri, S. K. Sadrnezhaad, Hydroxyapatite Nanocomposites: Synthesis, Sintering and Mechanical Properties, Ceramics International,
Vol. 39, No. 3, 2013, pp. 2197-2206, https://doi.org/10.1016/j.ceramint.2012.09.023.
[19] G. L. Darimont, R. Cloots, E. Heinen, L. Seidel, R. Legrand, In Vivo Behaviour of Hydroxyapatite Coatings on Titanium Implants: A Quantitative Study in the Rabbit, Biomaterials, Vol. 23, 2002, https://doi.org/10.1016/s0142-9612(01)00392-1.
[20] N. Eliaz, N. Metoki, Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies And Biomedical Applications, Materials, Vol. 10, No. 4, 2017, pp. 334, https://doi.org/10.3390/-ma10040334.
[21] A. Haider, S. Haider, S. S. Han, I. K. Kang, Recent Advances in the Synthesis, Functionalization and Biomedical Applications of Hydroxyapatite: A Review, RSC Advances, Vol. 7, No. 13, 2017, pp. 7442-7458, https://doi.org/10.1039/c6ra26124h.
[22] T. S. Zaporozhets, A. V. Puz’, S. L. Sinebryukhov, S. V. Gnedenkov, T. P. Molina, N. N. Besednova, Biocompatibility of Modified Osteoinductive Calcium-Phosphate Coatings of Metal Implants, Bulletin of Experimental Biology and Medicine, Vol. 162, No. 3, 2017, pp. 366-369, https://doi.org/10.1007/s10517-017-3617-1.
[23] Y. Guo, Y. Su, R. Gu, Z. Zhang, G. Li, J. Lian, L. Ren, Enhanced Corrosion Resistance and Biocompatibility of Biodegradable Magnesium Alloy Modified by Calcium Phosphate/Collagen Coating, Surface and Coatings Technology, Vol. 401, 2020, pp. 126318, https://doi.org/10.1016/j.surfcoat.2020.126318.
[24] D. Gopi, A. Karthika, S. Nithiya, L. Kavitha, In Vitro Biological Performance of Minerals Substituted Hydroxyapatite Coating by Pulsed Electrodeposition Method, Materials Chemistry and Physics, Vol. 144,
No. (1–2), 2014, pp. 75-85, https://doi.org/10.1016/j.matchemphys.2013.12.017.
[25] D. Gopi, A. Karthika, D. Rajeswari, L. Kavitha, R. Pramod, J. Dwivedi, Investigation on Corrosion Protection and Mechanical Performance of Minerals Substituted Hydroxyapatite Coating on HELCDEB-Treated Titanium Using Pulsed Electrodeposition Method, RSC Advances, Vol. 4, No. 66, 2014, pp. 34751-34759, https://doi.org/10.1039/c4ra04484c.
[26] Y. Huang, Q. Ding, X. Pang, S. Han, Y. Yan, Corrosion Behavior and Biocompatibility of Strontium and Fluorine Co-Doped Electrodeposited Hydroxyapatite Coatings, Applied Surface Science, Vol. 282, 2013,
pp. 456-462, https://doi.org/10.1016/j.apsusc.2013.05.152.
[27] Z. Y. Li, W. M. Lam, C,.Yang, B. Xu, G. X. Ni, S. A. Abbah, K. M. C. Cheung, K. D. K. Luk, W. W. Lu, Chemical Composition, Crystal Size and Lattice Structural Changes After Incorporation of Strontium Into Biomimeticapatite, Biomaterials, Vol. 28, No. 7, 2007, pp. 1452-1460, https://doi.org/10.1016/j.biomaterials.2006.11.001.
[28] A. L. Oliveira, R. L. Reis, P Li, Strontium-substituted Apatite Coating Grown on Ti6Al4V Substrate Through Biomimetic Synthesis, Journal of Biomedical Materials Research - Part B Applied Biomaterials, Vol. 83, No. 1, 2007, pp. 258-265, https://doi.org/10.1002/jbm.b.30791.
[29] Y. Huang, M. Hao, X. Nian, H. Qiao, X. Zhang, X. Zhang, G. Song, J. Guo, X. Pang, H. Zhang, Strontium and Copper Co-Substituted Hydroxyapatite-Based Coatings with Improved Antibacterial Activity and Cytocompatibility Fabricated by Electrodeposition, Ceramics International, Vol. 42, No. 10, 2016, pp. 11876-11888, https://doi.org/10.1016/j.ceramint.2016.04.110.
[30] Y. Huang, H. Qiao, X. Nian, X. Zhang, X. Zhang, G. Song, Z. Xu, H. Zhang, S. Han, Improving the Bioactivity and Corrosion Resistance Properties of Electrodeposited Hydroxyapatite Coating by Dual Doping of Bivalent Strontium and Manganese Ion, Surface and Coatings Technology, Vol. 291, 2016, pp. 205-215, https://doi.org/10.1016/j.surfcoat.2016.02.042.
[31] V. F. Pichugin, R. A. Surmenev, E. V. Shesterikov, M. A. Ryabtseva, E. V. Eshenko, S. I. Tverdokhlebov,
O. Prymak, M. Epple, The Preparation of Calcium Phosphate Coatings on Titanium And Nickel-Titanium by
Rf-Magnetron-Sputtered Deposition: Composition, Structure and Micromechanical Properties, Surface and Coatings Technology, Vol. 202, No. 16, 2008, pp. 3913-3920, https://doi.org/10.1016/j.surfcoat.2008.01.038.
[32] M. A. Surmeneva, M. V. Chaikina, V. I. Zaikovskiy, V. F. Pichugin, V. Buck, O. Prymak, M. Epple, R. A. Surmenev, The Structure of An Rf-Magnetron Sputter-Deposited Silicate-Containinghydroxyapatite-Based Coating Investigated by High-Resolution Techniques, Surface and Coatings Technology, Vol. 218, No. 1, 2013, pp. 39-46, https://doi.org/10.1016/j.surfcoat.2012.12.023.
[33] G. Choi, A. H. Choi, L. A. Evans, S. Akyol, B. B. Nissan, A Review: Recent Advances in Sol-Gel-Derived Hydroxyapatite Nanocoatings for Clinical Applications, Journal of the American Ceramic Society, Vol. 103,
No. 10, 2020, pp. 5442-5453, https://doi.org/10.1111/jace.17118.
[34] A. Ç. Kılınç, S. Köktaş, A. A. Göktaş, Characterization of Eggshell-Derived Hydroxyapatite on Ti6Al4V Metal Substrate Coated By Sol–Gel Method, Journal of the Australian Ceramic Society, Vol. 57, No. 1, 2021,
pp. 47-53, https://doi.org/10.1007/s41779-020-00511-y.
[35] J. Wang, Y. Chao, Q. Wan, Z. Zhu, H. Yu, Fluoridated Hydroxyapatite Coatings on Titanium Obtained by Electrochemical Deposition, Acta Biomaterialia, Vol. 5, No. 5, 2009, pp. 1798-1807, https://doi.org/10.1016/-j.actbio.2009.01.005.
[36] N. Eliaz, S. Shmueli, I. Shur, D. Benayahu, D. Aronov, G. Rosenman, The Effect of Surface Treatment on the Surface Texture and Contact Angle of Electrochemically Deposited Hydroxyapatite Coating and on Its Interaction with Bone-Forming Cells, Acta Biomaterialia, Vol. 5, No. 8, 2009, pp. 3178-3191, https://doi.org/10.1016/-j.actbio.2009.04.005.
[37] M. F. Morks, Fabrication and Characterization of Plasma-Sprayed HA/Sio2 Coatings for Biomedical Application, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 1, No. 1, 2008, pp. 105-111, https://doi.org/10.1016/j.jmbbm.2007.04.003.
[38] P. Fauchais, A.Vardelle, Innovative and Emerging Processes in Plasma Spraying: from Micro-To Nano-Structured Coatings, Journal of Physics D: Applied Physics, Vol. 44, No. 19, 2011, pp. 194011-194026, https://doi.org/10.1088/0022-3727/44/19/194011.
[39] Y. Z. Huang, S. K. He, Z. J. Guo, J. K. Pi, L. Deng, L. Dong, Y. Zhang, B. Su, L. C. Da, L. Zhang, Z. Xiang,
W. Ding, M. Gong, H. Q. Xie, Nanostructured Titanium Surfaces Fabricated by Hydrothermal Method: Influence of Alkali Conditions on the Osteogenic Performance of Implants, Materials Science and Engineering C, Vol. 94, 2019, pp. 1-10, https://doi.org/10.1016/j.msec.2018.08.069.
[40] D. He, X. Zhang, P. Liu, X. Liu, X. Chen, F. Ma, W. Li, K. Zhang, H. Zhou, Effect of Hydrothermal Treatment Temperature on the Hydroxyapatite Coatings Deposited by Electrochemical Method, Surface and Coatings Technology, Vol. 406, 2021, pp. 126656-126683, https://doi.org/10.1016/j.surfcoat.2020.126656.
[41] D. Liu, K. Savino, M. Z. Yates, Coating of Hydroxyapatite Films on Metal Substrates by Seeded Hydrothermal Deposition, Surface and Coatings Technology, Vol. 205, No. 16, 2011, pp. 3975-3986, https://doi.org/-10.1016/j.surfcoat.2011.02.008.
[42] W. L. Suchanek, R. E. Riman, Hydrothermal Synthesis of Advanced Ceramic Powders, Advances in Science and Technology Vol. 45, 2006, pp. 184-193, https://doi.org/10.4028/www.scientific.net/ast.45.184.
[43] N. H. Thong, B. T. Hue, L. Q. Duong, L. V. Toan, H. N. Van, D. T. Tung, C. X. Thang, N. V. Tung, N. T. Lan, H. V. Vuong, L. T. Hung, P. H. Vuong, Synthesis of Hydroxyapatite Coatings with Hexagonal Crystal Structure on Etched Titanium by Hydrothermal Tethod, VNU Journal of Science: Mathematics – Physics, Vol. 38, No. 4, 2022, pp. 85-92, https://doi.org/10.25073/2588-1124/vnumap.4740.
[44] X. Hu, H. Shen, Y. Cheng, X. Xiong, S. Wang, J. Fang, S. Wei, One-step Modification of Nano-Hydroxyapatite Coating on Titanium Surface By Hydrothermal Method, Surface and Coatings Technology, Vol. 205, No. 7, 2010, pp. 2000-2006, https://doi.org/10.1016/j.surfcoat.2010.08.088.
[45] L. Stipniece, S. Wilsonb, J. M. Curran, R. Chen, K. S. Ancane, P. K. Sharma, B. J. Meenan, A. R. Boyd, Strontium Substituted Hydroxyapatite Promotes Direct Primary Human Osteoblast Maturation, Ceram. Int.,
Vol. 47, 2021, pp. 3368-3379, https://doi.org/10.1016/j.ceramint.2020.09.182.
[46] H. E. Boujaady, M. Mourabet, A. E. Rhilassi, M. B. Ziatni, R. E. Hamri, A. Taitai, Adsorption of A Textile Dye on Synthesized Calcium Deficient Hydroxyapatite (Cdhap): Kinetic and Thermodynamic Studies, J. Mater. Environ. Sci., Vol. 7, 2016, pp. 4049-4063, https://www.researchgate.net/publication/309107468.
[47] S. Agrawal, M. Kelkar, A. De, A. R. Kulkarni, M. N. Gandhi, Newly Emerging Mesoporous Strontium Hydroxyapatite Nanorods: Microwave Synthesis and Relevance As Doxorubicin Nanocarrier, J Nanopart Res, Vol. 20, 2018, pp. 230-241, https://link.springer.com/article/10.1007/s11051-018-4335-y.