Trinh Thi Loan, Vu Hoang Huong

Main Article Content

Abstract

In this work, three TiO2 anatase phase samples, labeled as S1, S2, and S3, were synthesized using varying titanium precursors, solvents, and conditions to compare their photocatalytic performances. The structural and morphological properties of the synthesized samples were characterized through X-ray diffraction (XRD), Raman scattering, field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The obtained results indicated that all samples exhibited an anatase crystalline phase. Sample S1 notably featured nanowires with an average diameter of 38.6 nm. Meanwhile, samples S2 and S3 comprised nanoparticles, each exhibiting unique average sizes of 12.76 nm and 10.11 nm, respectively. The diffuse reflectance spectra reveal that the S3 sample possesses the lowest bandgap, suggesting its potential as the most promising photocatalyst. Additionally, photocurrent response and electrochemical impedance spectroscopy (EIS) were characterized to elucidate the charge transfer mechanisms within the materials. The degradation efficiencies of Rhodamine B (RhB) for samples S1, S2, and S3 were determined to be 17.40%, 17.93%, and 33.04%, respectively, under visible light irradiation. This study provides valuable insights into the criteria for choosing efficient TiO2 photocatalysts.

Keywords: TiO2 anatase phase; Nanowires, Nanoparticles; Photocatalysis.

References

[1] S. M. Gupta, M. Tripathi, A Review of TiO2 Nanoparticles, Chinese Sci Bull, Vol. 56, No. 16, 2011, pp. 1639-1657, https://doi.org/10.1007/s11434-011-4476-1.
[2] S. Reghunath, D. Pinheiro, S. D. KR, A Review of Hierarchical Nanostructures of TiO2: Advances and Applications, Applied Surface Science Advances Vol. 3, 2021, pp. 100063, https://doi.org/10.1016/j.apsadv.2021.100063.
[3] T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Why is Anatase A Better Photocatalyst than Rutile? - Model Studies on Epitaxial TiO2 Films, Scientific Reports, Vol. 4, 2014, pp. 4043, https://doi.org/10.1038/srep04043.
[4] J. N. Wilson, H. Idriss, Effect of Surface Reconstruction of TiO2 (001) Single Crystal on the Photoreaction of Acetic Acid, J. Catal., Vol. 214, 2003, pp.46-52, https://doi.org/10.1016/S0021-9517(02)00172-0.
[5] M. Xu, Y. Gao, E. M. Moreno, M. Kunst, M. Muhler, Y. Wang, H. Idriss, C. Wöll, Photocatalytic Activity of Bulk TiO2 Anatase and Rutile Single Crystals Using Infrared Absorption Spectroscopy, Phys. Rev. Lett.,
Vol. 106, 2011, pp. 138302, https://doi.org/10.1103/physrevlett.106.138302.
[6] P. Lavudya, H. Pant, V. V. S. S. Srikanth, R. Ammanabrolu, Mesoporous and Phase Pure Anatase TiO2 Nanospheres for Enhanced Photocatalysis, Inorg. Chem. Commun., Vol. 152, 2023, pp. 110699, https://doi.org/10.1016/j.inoche.2023.110699.
[7] V. H. Huong, Construction of Sn3O4/g-C3N4 Composite with Enhanced Photocatalytic Activities Under Visible Light Irradiation, Vol. 39, No. 1, 2023, https://doi.org/10.25073/2588-1124/vnumap.4761.
[8] T. T. Loan, N. N. Long, Synthesis and Characterization of Anatase TiO2:Cu2+ Powders Prepared Via a Sol-gel Technique, Vol. 34, No. 3, 2018, https://doi.org/10.25073/2588-1124/vnumap.4272.
[9] O. Frank, M. Zukalova, B. Laskova, J. Kurti, J. Koltaib, L. Kavan, Raman Spectra of Titanium Dioxide (Anatase, Rutile) with Identified Oxygen Isotopes (16, 17, 18), Phys. Chem. Chem. Phys., Vol. 14, 2012, pp. 14567-14572, https://doi.org/10.1039/C2CP42763J.
[10] T. Ohsaka, F. Izumi, Y. Fujiki, Raman Spectrum of Anatase, TiO2, Vol. 7, No. 6, 1978, pp. 321-324, https://doi.org/10.1002/jrs.1250070606.
[11] B. D. Viezbicke, S. Patel, B. E. Davis, D. P. Birnie, Evaluation of the Tauc Method for Optical Absorption Edge Determination: ZnO Thin Films As A Model System, Phys. Status Solidi B, Vol. 252, 2015, pp. 1700-1710, https://doi.org/10.1002/pssb.201552007.
[12] N. Daude, C. Gout, C. Jouanin, Electronic Band Structure of Titanium Dioxide, Phys. Rev. B, Vol. 15, 1977,
pp. 3229-3235, https://doi.org/10.1103/PhysRevB.15.3229.
[13] R. López, R. Gómez, Band-gap Energy Estimation from Diffuse Reflectance Measurements on Sol–Gel and Commercial TiO2: A Comparative Study, Vol. 61, No. 1, 2012, pp. 1-7, http://dx.doi.org/10.1007/s10971-011-2582-9.
[14] V. H. Huong, T. T. Loan, K. P. Pham, M. N. Ha, Q. H. Nguyen, Y. R. Ma, A. B. Ngac, V. C. Nguyen, Unveiling the Synergistic Interplay of Appropriate Oxygen Vacancies and S-Scheme Heterojunction Structures in OVs-TiO2/g-C3N4 Catalyst for Efficient RhB Photodegradation and H2 Production, J. Alloys Compd., Vol. 972, 2024, pp. 172722, https://doi.org/10.1016/j.jallcom.2023.172722.
[15] M. Zhang, M. Arif, Y. Dong, X. Chen, X. Liu, Z-scheme TiO2−x@ZnIn2S4 Architectures with Oxygen Vacancies-Mediated Electron Transfer for Enhanced Catalytic Activity Towards Degradation of Persistent Antibiotics, Colloids Surf. A: Physicochem. Eng., Vol. 649, 2022, pp. 129530, https://doi.org/10.1016/j.colsurfa.2022.129530.
[16] L. Kernazhitsky, V. Shymanovska, T. Gavrilko, V. Naumov, L. Fedorenko, V. Kshnyakin, J. Baran, Room Temperature Photoluminescence of Anatase and Rutile TiO2 Powders, J. Lumin, Vol. 146, 2014, pp. 199-204, https://doi.org/10.1016/j.jlumin.2013.09.068.