Exciton Mott Transition in Photoexcited Semiconductor Revealed in Terahertz Absorption Spectra
Main Article Content
Abstract
We theoretically investigated the terahertz (THz) absorption spectra in optically excited semiconductors. By applying Bardeen-Cooper-Schriffer (BCS)-like mean field approximation, we have reproduced the spectral position of component originating from the 1s to 2p intraband transition in various density regimes. We have investigated the THz absorption spectra in various density regimes, and in a range of temperatures above the critical temperature of BCS-BEC crossover. By analysing THz absorption spectra, we have shown that the exciton Mott transition can be studied.
Keywords:
Terahertz Spectroscopy, Exciton Mott transition, Semiconductors, Exciton.
References
[1] N. F. Mott, The Transition to the Metallic State, Philos. Mag., Vol. 6, No. 62, 1961, pp. 287-309, https://doi.org/10.1080/14786436108243318
[2] N. F. Mott, Metal-Insulator Transitions, Taylor and Francis, London, UK, 1974.
[3] Y. Hayamizu, M. Yoshita, Y. Takahashi, H. Akiyama, C. Z. Ning, L. N. Pfeifer, K. W. West, Biexciton Gain and the Mott Transition in GaAs Quantum Wires, Phys. Rev. Lett., Vol. 99, No. 16, 2007, pp. 167403, https://doi.org/10.1103/PhysRevLett.99.167403.
[4] T. Yoshioka, K. Asano, Exciton-Mott Physics in a Quasi-One-Dimensional Electron-Hole System, Phys. Rev. Lett., Vol. 107, No. 25, 2011, pp. 256403, https://doi.org/10.1103/PhysRevLett.107.256403.
[5] T. Yoshioka, K. Asano, Classical-quantum Crossoovers in Quasi-one-dimensional Electron-hole Systems: Exciton Mott Physics and Interband Optical Spectra, Phys. Rev. B, Vol. 86, No. 11, 2012, pp. 115314, https://doi.org/10.1103/PhysRevB.86.115314.
[6] R. A. Kaindl, M. A. Carnahan, D, Hägele, R. Lövenich, D. S. Chemla, Ultrafast Terahertz Probes of Transient Conducting and Insulating Phases in an Electron-hole Gas, Nature, Vol. 423, No. 20, 2003, pp. 734-738, https://doi.org/10.1038/nature01676.
[7] D. Saeekia, Handbook of Terehertz Technology for Imaging, Sensing and Communications, Woodhead Publishing, Cambridge, UK, 2013.
[8] X. Yin, B. W. H. Ng, D. Abbott, Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction. Springer, New York, 2012.
[9] E. Hendry, F. Wang, J. Shan, T. F. Heinz, M. Bonn, Electron Transport in TiO2 Probed by THz Time-domain Spectroscopy, Phys. Rev. B, Vol. 69, No. 8, 2004, pp. 081101, https://doi.org/10.1103/PhysRevB.69.081101.
[10] H. Hirori, M. Nagai, K. Tanaka, Efficient Matrix-product State Method for Periodic Boundary Conditions, Phys. Rev. B, Vol. 81, No. 8, 2010, pp. 081305, https://doi.org/10.1103/PhysRevB.81.081103.
[11] H. Hirori, A. Doi, F. Blanchard, K. Tanaka, Single-cycle Terahertz Pulses with Amplitudes Exceeding 1 MV/cm Generated by Optical Rectification in LiNbO3, Appl. Phys. Lett., Vol. 98, 2011, pp. 091106, https://doi.org/10.1063/1.3560062.
[12] M. Vanexter, C. Fattinger, D. Grischkowsky, Terahertz Time-domain Spectroscopy of Water Vapor, Opt. Lett., Vol. 14, No. 20, 1989, pp. 1128-1130, https://doi.org/10.1364/OL.14.001128.
[13] S. A. Moskalenko, D. W. Snoke, Bose-Einstein Condensation of Excitons, Cambridge University Press, Cambridge, England, 2000.
[14] A. Griffin, D. W. Snoke, S. Stringari, Bose-Einstein Condensation, Cambridge University Press, Cambridge, England, 1995.
[15] D. W. Snoke, J. P. Wolfe, A. Mysyrowicz, Evidence for Bose-Einstein Condensation of Excitons in Cu2O, Phys. Rev. B, Vol. 41, No. 16, 1990, pp. 11171, https://doi.org/10.1103/PhysRevB.41.11171.
[16] J. L. Lin, J. P. Wolfe, Bose-Einstein Condensation of Paraexcitons in Stressed Cu2O, Phys. Rev. Lett., Vol. 71, No. 8, 1993, pp. 1222, https://doi.org/10.1103/PhysRevLett.71.1222.
[17] K. Johnsen, G. M. Kavoulakis, Probing Bose-Einstein Condensation of Excitons with Electromagnetic Radiation, Phys. Rev. Lett., Vol. 86, No. 5, 2001, pp. 858, https://doi.org/10.1103/PhysRevLett.86.858.
[18] H. Haken, On the Theory of Excitons in Solids, J. Phys. Chem. Solids, Vol. 8, 1959, pp. 166-171, https://doi.org/10.1016/0022-3697(59)90307-5.
[19] S. Nikitine, On the Possibility of Observation and the Intensity of (nn′) and (nn) Transitions between Exciton States in Cu2O, J. Phys. Chem. Solids, Vol. 45, No. 8-9, 1984, pp. 949-954,
https://doi.org/10.1016/0022-3697(84)90138-0.
[20] M. Jörger, E. Tsitsishvili, T. Flek, C. Klingshirn, Infrared Absorption by Exciton in Cu2O, Phys. Stat. Sol. B,
Vol. 238, No. 3, 2003, pp. 470-473, https://doi.org/10.1002/pssb.200303164.
[21] M. Jörger, T. Flek, C. Klingshirn, 1s→2p Terahertz Transitions of the 1s Paraexciton in Cu2O, J. Lumin.,
Vol. 112, No. 1-4, 2005, pp. 21-24, https://doi.org/10.1016/j.jlumin.2004.09.041.
[22] T. J. Inagaki, T. Iida, M. Aihara, Many-body Theory of Pump-probe Spectra for Highly Excited Semiconductors, Phys. Rev. B, Vol. 62, No. 16, 2000, pp. 10852, https://doi.org/10.1103/PhysRevB.65.205204.
[23] T. J. Inagaki, M. Aihara, Many-body Theory for Luminescence Spectra in High-density Electron-hole Systems, Phys. Rev. B, Vol. 65, No. 20, 2002, pp. 205204, https://doi.org/10.1103/PhysRevB.65.205204.
[24] T. J. Inagaki, M. Aihara, Infrared Absorption in High-density Electron-hole Systems: The Role of Quantum Fluctuations, Phys. Rev. B, Vol. 66, No. 7, 2002, pp. 075204, https://doi.org/10.1103/PhysRevB.66.075204.
[25] Y. T. H. Le, T. J. Inagaki, Densitty Dependence of the Terahertz Absorption Spectra in Optically Excited Semiconductors, Phys. Sta. Sol. B, Vol. 253, No. 3, 2015, pp. 589-599, https://doi.org/10.1002/pssb.201451191.
[26] T. Tayagaki, A. Mysyrowicz, M. K. Gonokami, The Yellow Excitonic Series of Cu2O Revisited by Lyman Spectroscopy, J. Phys. Soc. Jpn., Vol. 74, No. 5, 2015, pp. 1423-1426, https://doi.org/10.1143/JPSJ.74.1423.
[27] T. Suzuki, R. Shimano, Exciton Mott Transition in Si Revealed by Terahertz Spectroscopy, Phys. Rev. Lett.,
Vol. 109, No. 4, 2012, pp. 046402, https://doi.org/10.1103/PhysRevLett.109.046402.
[28] P. Nozières, S. S. Rink, Bose Condensation in an Attractive Fermion Gas: from Weak to Strong Coupling Superconductivity, J. Low Temp. Phys., Vol. 59, 1985, pp. 195-211, https://doi.org/10.1007/BF00683774.
[29] D. Kremp, D. Semkat, K. Henneberger, Quantum Condensation in Electron-hole Plasmas, Phys. Rev. B., Vol. 78, No. 12, 2008, pp. 125315, https://doi.org/10.1103/PhysRevB.78.125315.
[30] K. Yoshioka, E. Chae, M. K. Gonokami, Transition to a Bose-Einstein Condensate and Relaxation Explosion of Excitons at sub-Kelvin Temperatures, Nature Commun, Vol. 2, 2011, pp. 328, https://doi.org/10.1038/ncomms1335.
[31] H. Stolz, R. Schwartz, F. Kieseling, S. Som, M. Kaupsch, S. Sobkowiak, D. Semkat, N. Naka, T. Koch, and H. Fehske, Condensation of Excitons in Cu2O at Ultracold Temperatures: Experiment and Theory, New J. Phys., Vol. 14, 2012, 105007, https://doi.org/10.1088/1367-2630/14/10/105007.
[32] H. Stolz, R. Zimmermann, Correlated and a Mass Action Law in Two-component Fermi Systems Excitons in an Electron-hole Plasma, Phys. Sta. Sol. B, Vol. 94, No. 1, 1979, pp. 135-146, https://doi.org/10.1002/pssb.2220940114.
[33] R. Zimmermann, H. Stolz, The Mass Action Law in Two-Component Fermi Systems Revisited Excitons and Electron-Hole Pairs, Phys. Sta. Sol. B, Vol. 131, No. 1, 1985, pp. 151-164, https://doi.org/10.1002/pssb.2221310115.
[34] N. H. Kwong, G. Rupper, R. Binder, Self-consistent T-matrix Theory of Semiconductor Light-absorption and Luminescence, Phys. Rev. B, Vol. 79, No. 15, 2009, pp. 155205, https://doi.org/10.1103/PhysRevB.79.155205.
[2] N. F. Mott, Metal-Insulator Transitions, Taylor and Francis, London, UK, 1974.
[3] Y. Hayamizu, M. Yoshita, Y. Takahashi, H. Akiyama, C. Z. Ning, L. N. Pfeifer, K. W. West, Biexciton Gain and the Mott Transition in GaAs Quantum Wires, Phys. Rev. Lett., Vol. 99, No. 16, 2007, pp. 167403, https://doi.org/10.1103/PhysRevLett.99.167403.
[4] T. Yoshioka, K. Asano, Exciton-Mott Physics in a Quasi-One-Dimensional Electron-Hole System, Phys. Rev. Lett., Vol. 107, No. 25, 2011, pp. 256403, https://doi.org/10.1103/PhysRevLett.107.256403.
[5] T. Yoshioka, K. Asano, Classical-quantum Crossoovers in Quasi-one-dimensional Electron-hole Systems: Exciton Mott Physics and Interband Optical Spectra, Phys. Rev. B, Vol. 86, No. 11, 2012, pp. 115314, https://doi.org/10.1103/PhysRevB.86.115314.
[6] R. A. Kaindl, M. A. Carnahan, D, Hägele, R. Lövenich, D. S. Chemla, Ultrafast Terahertz Probes of Transient Conducting and Insulating Phases in an Electron-hole Gas, Nature, Vol. 423, No. 20, 2003, pp. 734-738, https://doi.org/10.1038/nature01676.
[7] D. Saeekia, Handbook of Terehertz Technology for Imaging, Sensing and Communications, Woodhead Publishing, Cambridge, UK, 2013.
[8] X. Yin, B. W. H. Ng, D. Abbott, Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction. Springer, New York, 2012.
[9] E. Hendry, F. Wang, J. Shan, T. F. Heinz, M. Bonn, Electron Transport in TiO2 Probed by THz Time-domain Spectroscopy, Phys. Rev. B, Vol. 69, No. 8, 2004, pp. 081101, https://doi.org/10.1103/PhysRevB.69.081101.
[10] H. Hirori, M. Nagai, K. Tanaka, Efficient Matrix-product State Method for Periodic Boundary Conditions, Phys. Rev. B, Vol. 81, No. 8, 2010, pp. 081305, https://doi.org/10.1103/PhysRevB.81.081103.
[11] H. Hirori, A. Doi, F. Blanchard, K. Tanaka, Single-cycle Terahertz Pulses with Amplitudes Exceeding 1 MV/cm Generated by Optical Rectification in LiNbO3, Appl. Phys. Lett., Vol. 98, 2011, pp. 091106, https://doi.org/10.1063/1.3560062.
[12] M. Vanexter, C. Fattinger, D. Grischkowsky, Terahertz Time-domain Spectroscopy of Water Vapor, Opt. Lett., Vol. 14, No. 20, 1989, pp. 1128-1130, https://doi.org/10.1364/OL.14.001128.
[13] S. A. Moskalenko, D. W. Snoke, Bose-Einstein Condensation of Excitons, Cambridge University Press, Cambridge, England, 2000.
[14] A. Griffin, D. W. Snoke, S. Stringari, Bose-Einstein Condensation, Cambridge University Press, Cambridge, England, 1995.
[15] D. W. Snoke, J. P. Wolfe, A. Mysyrowicz, Evidence for Bose-Einstein Condensation of Excitons in Cu2O, Phys. Rev. B, Vol. 41, No. 16, 1990, pp. 11171, https://doi.org/10.1103/PhysRevB.41.11171.
[16] J. L. Lin, J. P. Wolfe, Bose-Einstein Condensation of Paraexcitons in Stressed Cu2O, Phys. Rev. Lett., Vol. 71, No. 8, 1993, pp. 1222, https://doi.org/10.1103/PhysRevLett.71.1222.
[17] K. Johnsen, G. M. Kavoulakis, Probing Bose-Einstein Condensation of Excitons with Electromagnetic Radiation, Phys. Rev. Lett., Vol. 86, No. 5, 2001, pp. 858, https://doi.org/10.1103/PhysRevLett.86.858.
[18] H. Haken, On the Theory of Excitons in Solids, J. Phys. Chem. Solids, Vol. 8, 1959, pp. 166-171, https://doi.org/10.1016/0022-3697(59)90307-5.
[19] S. Nikitine, On the Possibility of Observation and the Intensity of (nn′) and (nn) Transitions between Exciton States in Cu2O, J. Phys. Chem. Solids, Vol. 45, No. 8-9, 1984, pp. 949-954,
https://doi.org/10.1016/0022-3697(84)90138-0.
[20] M. Jörger, E. Tsitsishvili, T. Flek, C. Klingshirn, Infrared Absorption by Exciton in Cu2O, Phys. Stat. Sol. B,
Vol. 238, No. 3, 2003, pp. 470-473, https://doi.org/10.1002/pssb.200303164.
[21] M. Jörger, T. Flek, C. Klingshirn, 1s→2p Terahertz Transitions of the 1s Paraexciton in Cu2O, J. Lumin.,
Vol. 112, No. 1-4, 2005, pp. 21-24, https://doi.org/10.1016/j.jlumin.2004.09.041.
[22] T. J. Inagaki, T. Iida, M. Aihara, Many-body Theory of Pump-probe Spectra for Highly Excited Semiconductors, Phys. Rev. B, Vol. 62, No. 16, 2000, pp. 10852, https://doi.org/10.1103/PhysRevB.65.205204.
[23] T. J. Inagaki, M. Aihara, Many-body Theory for Luminescence Spectra in High-density Electron-hole Systems, Phys. Rev. B, Vol. 65, No. 20, 2002, pp. 205204, https://doi.org/10.1103/PhysRevB.65.205204.
[24] T. J. Inagaki, M. Aihara, Infrared Absorption in High-density Electron-hole Systems: The Role of Quantum Fluctuations, Phys. Rev. B, Vol. 66, No. 7, 2002, pp. 075204, https://doi.org/10.1103/PhysRevB.66.075204.
[25] Y. T. H. Le, T. J. Inagaki, Densitty Dependence of the Terahertz Absorption Spectra in Optically Excited Semiconductors, Phys. Sta. Sol. B, Vol. 253, No. 3, 2015, pp. 589-599, https://doi.org/10.1002/pssb.201451191.
[26] T. Tayagaki, A. Mysyrowicz, M. K. Gonokami, The Yellow Excitonic Series of Cu2O Revisited by Lyman Spectroscopy, J. Phys. Soc. Jpn., Vol. 74, No. 5, 2015, pp. 1423-1426, https://doi.org/10.1143/JPSJ.74.1423.
[27] T. Suzuki, R. Shimano, Exciton Mott Transition in Si Revealed by Terahertz Spectroscopy, Phys. Rev. Lett.,
Vol. 109, No. 4, 2012, pp. 046402, https://doi.org/10.1103/PhysRevLett.109.046402.
[28] P. Nozières, S. S. Rink, Bose Condensation in an Attractive Fermion Gas: from Weak to Strong Coupling Superconductivity, J. Low Temp. Phys., Vol. 59, 1985, pp. 195-211, https://doi.org/10.1007/BF00683774.
[29] D. Kremp, D. Semkat, K. Henneberger, Quantum Condensation in Electron-hole Plasmas, Phys. Rev. B., Vol. 78, No. 12, 2008, pp. 125315, https://doi.org/10.1103/PhysRevB.78.125315.
[30] K. Yoshioka, E. Chae, M. K. Gonokami, Transition to a Bose-Einstein Condensate and Relaxation Explosion of Excitons at sub-Kelvin Temperatures, Nature Commun, Vol. 2, 2011, pp. 328, https://doi.org/10.1038/ncomms1335.
[31] H. Stolz, R. Schwartz, F. Kieseling, S. Som, M. Kaupsch, S. Sobkowiak, D. Semkat, N. Naka, T. Koch, and H. Fehske, Condensation of Excitons in Cu2O at Ultracold Temperatures: Experiment and Theory, New J. Phys., Vol. 14, 2012, 105007, https://doi.org/10.1088/1367-2630/14/10/105007.
[32] H. Stolz, R. Zimmermann, Correlated and a Mass Action Law in Two-component Fermi Systems Excitons in an Electron-hole Plasma, Phys. Sta. Sol. B, Vol. 94, No. 1, 1979, pp. 135-146, https://doi.org/10.1002/pssb.2220940114.
[33] R. Zimmermann, H. Stolz, The Mass Action Law in Two-Component Fermi Systems Revisited Excitons and Electron-Hole Pairs, Phys. Sta. Sol. B, Vol. 131, No. 1, 1985, pp. 151-164, https://doi.org/10.1002/pssb.2221310115.
[34] N. H. Kwong, G. Rupper, R. Binder, Self-consistent T-matrix Theory of Semiconductor Light-absorption and Luminescence, Phys. Rev. B, Vol. 79, No. 15, 2009, pp. 155205, https://doi.org/10.1103/PhysRevB.79.155205.