Phase Tailoring of Dense Tantalum Films for Improving Hardness of Titanium Implants Using Negative Substrate Bias During DC Sputtering at Low Temperature
Main Article Content
Abstract
This work reports the deposition of a dense α-Ta and β-Ta films to enhance the surface hardness and biocompatibility of Ti by applying a different negative substrate bias during direct current (DC) sputtering. When a Ta film was deposited with a negative substrate bias voltage of 70 V, the microstructure of the film exhibited a single β-Ta phase. Whereas, a negative substrate bias of 150 V resulted in the formation of a single α-Ta phase. The deposition of the dense Ta film onto Ti significantly improved the hardness of the Ti film. Specifically, β-Ta films possessed a hardness as large as 21.0 ± 1.5 GPa, substantially higher than that of bare Ti (3.6 ± 0.3 GPa) and α-Ta films (8.3 ± 0.3 GPa). Additionally, the obtained results also showed that bydepositing the dense Ta film, one can get the biocompatible surface.
References
[2] K. Das, S. Bose, A. Bandyopadhyay, Surface Modifications and Cell-Materials Interactions with Anodized Ti, Acta Biomateriali, Vol. 3, 2007, pp. 573-585, https://doi.org/10.1016/j.actbio.2006.12.003.
[3] J. C. Mori, P. Serra, E. Martinez, G. Sardin, J. Esteve, J. L. Morenza, Surface Treatment of Titanium by Nd: YAG Laser Irradiation in the Presence of Nitrogen, Appl. Phys. A, Vol. 69, 1999, pp. 699-702, https://doi.org/10.1007/s003390051509.
[4] J. L. Woodman, J. J. Jacobs, J. O. Galante, R. M. Urban, Metal Ion Release from Titanium‐based Prosthetic Segmental Replacements of Long Bones in Baboons: A Long‐term Study, J. Orthop. Res., Vol. 1, 1984,
pp. 421-430, https://doi.org/10.1002/jor.1100010411.
[5] E. A. Trillo, C. Ortiz, P. Dickerson, R. Villa, S. W. Stafford, L. E. Murr, Evaluation of Mechanical and Corrosion Biocompatibility of TiTa Alloys, Journal of Materials Science: Materials In Medicine, Vol. 12, 2001, pp. 283-292, https://doi.org/10.1023/A:1011210101895.
[6] R. Knepper, B. Stevens, S. P. Baker, Effect of Oxygen on the Thermomechanical Behavior of Tantalum Thin Films during the β–α Phase Transformation, Appl. Phys., Vol. 100, 2006, pp. 12, https://doi.org/10.1063/1.2388742.
[7] H. Zitter, H. Plenk, The Electrochemical Behavior of Metallic Implant Materials as an Indicator of Their Biocompatibility, J. Biomed. Mater. Res., Vol. 21, 1987, pp. 881-896, https://doi.org/10.1002/jbm.820210705.
[8] M. Huang, Y. S. Liu, Z. B. He, Y. Yi, Structure, Phase Evolution and Properties of Ta films Deposited Using Hybrid High-power Pulsed and DC Magnetron Co-sputtering, Chin. Phys. B, Vol. 31, 2022, pp. 1-7, http://dx.doi.org/10.1088/1674-1056/ac43a9.
[9] Y. Motemani, C. Khare, A. Savan, M. Hans, A. Paulsen, J. Frenzel, Nanostructured Ti–Ta Thin Films Synthesized by Combinatorial Glancing Angle Sputter Deposition, Nanotechnology, Vol. 27, 2016, pp. 1-13, http://dx.doi.org/10.1088/0957-4484/27/49/495604.
[10] Y. Wang, X. Shi, M. Liu, Y. Yang, Q. Gao, B. Zhu, L. Xu, Structure and Properties of Ta Doped TiN Films Prepared using Different Sputtering Powers for Ta Target, Process. Appl. Ceram., Vol. 16, 2022, pp. 191-200, https://doi.org/10.2298/PAC2203191W.
[11] V. K. Balla, S. Banerjee, S. Bose, A. Bandyopadhyay, Direct Laser Processing of a Tantalum Coating on Titanium for Bone Replacement Structures, Acta Biomaterialia, Vol. 6, 2010, pp. 2329-2334, https://doi.org/10.1016/j.actbio.2009.11.021.
[12] M. Stiehler, M. Lind, T. Mygind, A. Baatrup, A. D. Pirouz, H. Li, M. Foss, F. Besenbacher, M. Kassem, C. Bünger, Morphology, Proliferation, and Osteogenic Differentiation of Mesenchymal Stem Cells Cultured on Titanium, Tantalum, and Chromium Surfaces, J. Biomed. Mater. Res. A, Vol. 86, 2008, pp. 448-458, https://doi.org/10.1002/jbm.a.31602.
[13] J. Zhang, Y. Huai, L. Chen, J. Zhang, Formation of Low Resistivity Alpha Ta by ion Beam Sputtering, J. Vac. Sci. Technol. B, Vol. 21, 2003, pp. 237-240, https://doi.org/10.1116/1.1535931.
[14] L. Gladczul, A. Patel, J. D. Demaree, M. Sosnowski, Sputter Deposition of Bcc Tantalum Films with TaN Underlayers for Protection of Steel, Thin Solid Films, Vol. 476, 2005, pp. 295-302, https://doi.org/10.1016/j.tsf.2004.10.020.
[15] H. J. Lee, K. W. Kwon, C. Ryu, R. Sinclair, Thermal Stability of a Cu/Ta Multilayer: An Intriguing Interfacial Reaction, Acta Mater., Vol. 47, 1999, pp. 3965-3975, https://doi.org/10.1016/S1359-6454(99)00257-8.
[16] R. Hoogeveen, M. Moske, H. Geisler, K. Samwer, Texture and Phase Transformation of Sputter-deposited Metastable Ta Films and TaCu Multilayers, Thin Solid Films, Vol. 275, 1996, pp. 203-206, https://doi.org/10.1016/0040-6090(95)07043-5.
[17] Y. M. Zhou, Z. Xie, H. N. Xiao, P. F. Hu, J. He, Effects of Deposition Parameters on Tantalum Films Deposited by Direct Current Magnetron Sputtering, J. Vac. Sci. Technol. A, Vol. 27, 2009, pp. 109-113, https://doi.org/10.1116/1.3046143.
[18] I. Safi, Recent Aspects Concerning DC Reactive Magnetron Sputtering of Thin Films: A Review, Surf. Coat. Technol., Vol. 127, 2000, pp. 203-218, https://doi.org/10.1016/S0257-8972(00)00566-1.
[19] F. Kunc, J. Musil, P. H. Mayrhofer, C. Mitterer, Low-stress Superhard TiB Films Prepared by Magnetron Sputtering, Surf. Coat. Technol., Vol. 174, 2003, pp. 744-753, https://doi.org/10.1016/S0257-8972(03)00425-0.
[20] M. Čekada, P. Panjan, Evaluation of Microhardness and Elastic Properties of Multilayer Hard Coatings by Microindentation, Vacuum, Vol. 61, 2001, pp. 235-240, https://doi.org/10.1016/S0042-207X(01)00122-1.
[21] M. Zhang, B. Yang, J. Chu, T. G. Nieh, Hardness Enhancement in Nanocrystalline Tantalum Thin Films, Scripta Materialia, Vol. 54, pp. 2006, pp. 1227-1230, https://doi.org/10.1016/j.scriptamat.2005.12.027.
[22] M. Zhang, Y. F. Zhang, P. D. Rack, M. K. Miller, T. G. Nieh, Nanocrystalline Tetragonal Tantalum Thin Films, Scipta Materialia, Vol. 57, 2007, pp. 1032-1035, https://doi.org/10.1016/j.scriptamat.2007.07.041.
[23] Y. Zhou, M. Niinomi, T. Akahori, M. Nakai, H. Fukui, Comparison of Various Properties between Titanium-Tantalum Alloy and Pure Titanium for Biomedical Applications, Mater. Trans., Vol. 48, 2007, pp. 380-384, https://doi.org/10.2320/matertrans.48.380.
[24] Y. L. Zhou, M. Niinomi, T. Akahori, H. Fukui, H. Toda, Corrosion Resistance and Biocompatibility of Ti–Ta Alloys for Biomedical Applications, Mater. Sci. Eng. A., Vol. 398, 2005, pp. 28-36, https://doi.org/10.1016/j.msea.2005.03.032.