Nguyen Van Hoang

Main Article Content

Abstract

 Let  be non-negative integers and  be an -module such that  is finitely generated for all  and  for all , where  is a class of modules. We hence prove that (1) if  then  is -cofinite for all ; (2) if  and  is finitely generated for all , then  is -cofinite for all . These extend the results of Khazaei-Sazeedeh [10, Thm 2.10, Thm 2.11] for local cohomology modules for a pair of ideals. Finally, we prove that  is -cofinite for all  whenever  is principal,  is an -module satisfying  is finitely generated for all , and  is in dimension . This extends a theorem [13, Thm 1] of Kawasaki.

Keywords: : cofinite module, local cohomology, local cohomology for a pair of ideals, in dimension < 2 module. MSC2020-Mathematics Subject Classification System: 13D45, 14B15, 13E05.

References

R. Takahashi, Y. Yoshinok, Yoshizawa, Local Cohomology Based on A Nonclosed Support Defined by A Pair of Ideals, J. Pure and Appl, Algebra, Vol. 213, No. 4, 2009, pp. 582-600, https://doi.org/10.1016/j.jpaa.2008.09.008.
A. Grothendieck, M. Raynaud, Local Cohomology of Coherent Sheaves and Global and Local Lefschetz Theorems (SGA2), (in French), in Algebraic geometry seminar of Bois Marie, 1962, Recomposed and annotated edition in Advanced Studies in Pure Mathematics 2, North-Holland Publishing Company - Amsterdam, 1968, New Updated Edition by Yves Laszlo of the Book: Documents Mathematics, Paris, Mathematical Society of France, Paris,
Vol. 4, 2005, https://doi.org/10.48550/arXiv.math/0511279.
R. Hartshorne, Affine Duality and Cofiniteness, Invent. Math. Vol. 9, 1970, pp. 145-164, https://doi.org/10.1007/BF01404554.
K. I. Yoshida, Cofiniteness of Local Cohomology Modules for Ideals of Dimension One, Nagoya Math. J,
Vol. 147, 1997, pp. 179-191, https://doi.org/10.1017/S0027763000006371.
D. Delfino, T. Marley, Cofinite Modules and Local Cohomology, J. Pure Appl. Alg. Vol. 121, No. 1, 1997,
pp. 45-52, https://doi.org/10.1016/S0022-4049(96)00044-8.
K. Bahmanpour, R. Naghipour, Cofiniteness of Local Cohomology Modules for Ideals of Small Dimension, J. Alg, Vol. 321, No. 7, 2009, pp. 1997-2011, https://doi.org/10.1016/j.jalgebra.2008.12.020.
M. Aghapournahr, K. Bahmanpour, Cofiniteness of Weakly Laskerian Local Cohomology Modules, Bull. Math. Soc. Sci. Math. Roumanie Tome Vol. 57, No. 4, 2014, pp. 347-356, http://www.jstor.org/stable/43678855 (accessed on: June 24th, 2024).
K. Bahmanpour, R. Naghipour, M. Sedghi, Modules Cofinite and Weakly Cofinite with Respect to an Ideal, J. Alg and Its Appl., Vol. 17, No. 3, 2018, pp. 1850056, https://doi.org/10.1142/S0219498818500561.
N. V. Hoang, N. T. Ngoan, On the Cofiniteness of Local Cohomology Modules in Dimension < 2, Hokkaido Math. J, Vol. 52, No. 1, 2023, pp. 65-73, https://doi.org/10.14492/hokmj/2020-428.
M. Khazaei, R. Sazeedeh, A Criterion for Cofiniteness of Modules, Rend. Sem. Mat. Univ. Padova, Vol. 151, 2024, pp. 201-211, https://doi.org/10.4171/rsmup/128.
A. Tehranian, A. P. E. Talemi, Cofiniteness of Local Cohomology Based on A Nonclosed Support Defined by A Pair of Ideals, Bull. Iranian Math. Soc. Vol. 36, No. 02, 2010, pp. 145-155, http://bims.iranjournals.ir/article_16_5c327b3a154ef3140eee1b10988a0689.pdf (accessed on: June 21st, 2024).
D. Asadollahi, R. Naghipour, Faltings’ Local-global Principle for the Finiteness of Local Cohomology Modules, Comm. Alg. Vol. 43, No. 3, 2015, pp. 953-958, https://doi.org/10.1080/00927872.2013.849261.
K. I. Kawasaki, Cofiniteness of Local Cohomology Modules for Principal Ideals, Bull. London Math. Soc,
Vol. 30, No. 3, 1998, pp. 241-246, https://doi.org/10.1112/S0024609397004347.
N. V. Hoang, A Note on the Cofiniteness of Local Cohomology Modules for A Pair of Ideals, TNU Journal of Science and Technology, Vol. 229, No. 6, 2024, pp. 75-81, https://doi.org/10.34238/tnu-jst.9517.
M. Aghpournahr, Cofiniteness of Local Cohomology Modules for A Pair of Ideals for Small Dimensions, J. Alg and Its App, Vol. 17, No. 2, 2018, pp. 1850020, https://doi.org/10.1142/S0219498818500202.
N. T. Ngoan, N. V. Hoang, N. H. Hoang, On the Cofiniteness of In Dimension < 2 Local Cohomology Modules for A Pair of Ideals, East-West J. of Math, Vol. 24, No. 2, 2023, pp. 118-127, http://eastwestmath.org/index.php/ewm/article/view/490/392 (accessed on: June 21st, 2024).
M. P. Brodmann, R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometry Applications, Second Edition, Cambridge University Press, 2013.
L. Melkersson, Modules Cofinite with Respect to an Ideal, J. Alg, Vol. 285, No. 2, 2005, pp. 649-668, https://doi.org/10.1016/j.jalgebra.2004.08.037.