The Influence of the Anomalous Coupling on the in the Randall - Sundrum Model
Main Article Content
Abstract
A study to produce a Z boson and a radion through anomalous couplings is considered from muon-muon colliders at the center of mass energy 10 TeV. The leptonic decays of the Z boson and a radion decaying into a pair of photons are considered. The integrated luminosity of muon colliders is 10 . The production cross-sections depend on the polarization of initial beams, the center of mass energy . The minimum integrated luminosity value is shown to correspond to a significance larger than 5s.
Keywords:
radion production, cross-section, anomalous couplings.
References
[1] Y. Hosotani, M. Mabe, Higgs Boson Mass and Electroweak-gravity Hierarchy from Dynamical Gauge-higgs Unification in the Warped Spacetime, Physics Letters B, Vol. 615, Iss. 3-4, 2005, pp. 257-265,
https://doi.org/10.1016/j.physletb.2005.04.039.
[2] S. Frixione, G. Stagnitto, The Muon Parton Distribution Functions, Journal of High Energy Physics, Vol. 12, 2023, pp. 170, https://doi.org/10.1007/JHEP12(2023)170.
[3] M. Belfkir, T. A. Chowdhury, S. Nasri, Doubly-charged Scalars of the Minimal Left-Right Symmetric Model at Muon Colliders, Physics Letters B, Vol. 852, 2024, pp. 138605, https://doi.org/10.1016/j.physletb.2024.138605.
[4] J. F. Gunion, Physics at a Muon Collider, AIP Conference Proceedings, Vol. 435, Iss. 1, 1998, pp. 35-37, https://doi.org/10.1063/1.56231.
[5] R. B. Palmer, Muon Colliders, Reviews Accelerator Science and Technology, Vol. 7, 2014, pp. 137-159, https://doi.org/10.1142/S1793626814300072.
[6] H. A. Ali et al., The Muon Smasher’s Guide, Reports on Progress in Physics, Vol. 85, No. 8, 2022, pp. 084201, https://doi.org/10.1088/1361-6633/ac6678.
[7] S. Spor, M. Koksal, Investigation of Anomalous Triple Gauge Couplings In Collision At Multi-Tev Muon Colliders, Canadian Journal of Physics, Vol. 101, No. 10, 2023, pp. 549-559, https://doi.org/10.1139/cjp-2022-0312.
[8] D. Buttazzo, D. Redigolo, F. Sala, A. Tesi, Fusing Vectors Into Scalars at High Energy Lepton Colliders, Journal of High Energy Physics, Vol. 11, 2018, pp. 144, https://doi.org/10.1007/JHEP11(2018)144.
[9] A. Costantini, F. D. Lillo, F. Maltoni, L. Mantani, O. Mattelaer, R. Ruiz, X. Zhao, Vector Boson Fusion at Multi-TeV Muon Colliders, Journal of High Energy Physics, Vol. 09, 2020, pp. 80, https://doi.org/10.1007/JHEP09(2020)080.
[10] M. Chiesa, F. Maltoni, L. Mantani, B. Mele, F. Piccinini and X. Zhao, Measuring the Quartic Higgs self-coupling at a Multi-TeV Muon Collider, Journal of High Energy Physics, Vol. 09, 2020, pp. 98, https://doi.org/10.1007/JHEP09(2020)098.
[11] P. Bandyopadhyay, A. Costantini, Obscure Higgs Boson at Colliders, Physical Review D, Vol. 103, 2021,
pp. 015025, https://doi.org/10.1103/PhysRevD.103.015025.
[12] T. Han, S. Li, S. Su, W. Su, Y. Wu, Heavy Higgs Bosons in 2HDN at a Muon Collider, Physical Review D,
Vol. 104, 2021, pp. 055029, https://doi.org/10.1103/PhysRevD.104.055029.
[13] T. Han, Z. Liu, L. T. Wang, X. Wang, WIMPs at High Energy Muon Colliders, Physical Review D, Vol. 103, 2021, 075004, https://doi.org/10.1103/PhysRevD.103.075004.
[14] R. Capdevilla, F. Meloni, R. Simoniello, J. Zurita, Hunting Wino and Higgsino Dark Matter at the Muon Collider with Disappearing Tracks, Journal of High Energy Physics, Vol. 06, 2021, pp. 133, https://doi.org/10.1007/JHEP06(2021)133.
[15] S. Bottaro, A. Strumia, N. Vignaroli, Minimal Dark Matter Bound States at Future Colliders, Journal of High Energy Physics, Vol. 06, 2021, pp. 143, https://doi.org/10.1007/JHEP06(2021)143.
[16] R. Capdevilla, D. Curtin, Y. Kahn, G. Krnjaic, Discovering the Physics of at Future Muon Colliders, Physical Review D, Vol. 103, 2021, pp. 075028, https://doi.org/10.1103/PhysRevD.103.075028.
[17] W. Yin, M. Yamaguchi, Muon g – 2 at a Multi-TeV Muon Collider, Physical Review D, Vol. 106, 2022,
pp. 033007, https://doi.org/10.1103/PhysRevD.106.033007.
[18] M. Ruhdorfer, E. Salvioni, A. Weiler, A Global View of the Off-shell Higgs Portal, SciPost Physics, Vol. 8, Iss.2, 2020, pp. 027, https://doi.org/10.21468/SciPostPhys.8.2.027.
[19] G. Y. Huang, F. S. Queiroz, W. Rodejohann, Gauged at a Muon Collider, Physical Review D, Vol. 103, 2021, pp. 095005, https://doi.org/10.1103/PhysRevD.103.095005.
[20] P. Asadi, R. Capdevilla, C. Cesarotti and S. Homiller, Searching for Leptoquarks at Future Muon Colliders, Journal of High Energy Physics, Vol. 10, 2021, pp. 182, https://doi.org/10.1007/JHEP10(2021)182.
[21] T. Han, D. Liu, I. Low, X. Wang, Electroweak Couplings of the Higgs Boson At A Multi-TeV Muon Collider, Physical Review D, Vol. 103, 2021, pp. 013002, https://doi.org/10.1103/PhysRevD.103.013002.
[22] B. T. H. Giang, D. V. Soa, L. M. Dung, Investigation of the Scalar Unparticle and Anomalous Couplings at Muon Colliders in Final States with Multiple Photons in the Randall-Sundrum Model, International Journal of Modern Physics A, Vol. 39, No. 5-6, 2024, pp. 2450029, https://doi.org/10.1142/S0217751X24500295.
[23] M. Ruhdorfer, E. Salvioni, A. Wulzer, Invisible Higgs Boson Decay from Forward Muons at a Muon Collider, Physical Review D, Vol. 107, Iss. 9, 2023, pp. 095038, https://doi.org/10.1103/PhysRevD.107.095038.
[24] C. Accettura, D. Adams, R. Agarwal, C. Ahdida, C. Aime, Towards a Muon Collider, The European Physical Journal C, Vol. 83, No. 9, 2023, pp. 864; The European Physical Journal C, Vol. 84, No. 1, 2024, pp. 36 (Erratum), https://doi.org/10.1140/epjc/s10052-023-11889-x.
[25] Z. Lu, H. Li, Z. L. Han, Z. G. Si, L. Zhao, Phenomenology of Heavy Neutral Gauge Boson At Muon Collider, Science China Physics, Mechanics & Astronomy, Vol. 67, No. 3, 2024, pp. 231012, https://doi.org/10.1007/s11433-023-2263-6.
[26] L. Randall, R. Sundrum, Large Mass Hierarchy from a Small Extra Dimension, Physical Review Letters, Vol. 83, Iss. 17, 1999, pp. 3370-3373, https://doi.org/10.1103/PhysRevLett.83.3370.
[27] Y. Ohno, G. C. Cho, Production and Decay of a Heavy Radion in Randall-Sundrum Model at the LHC, EPJ Web of Conferences, Vol. 49, 2013, pp. 18003, https://doi.org/10.1051/epjconf/20134918003.
[28] F. A. Ajameih, The Radion As A Dark Matter Candidate, International Journal of Modern Physics A, Vol. 33,
No. 24, 2018, pp. 1850144, https://doi.org/10.1142/S0217751X18501440.
[29] K. Cheung, T. C. Yuan, Could the Excess Seen at 124-126 GeV Be Due to the Randall-Sundrum Radion?, Physical Review Letters, Vol. 108, 2012, pp. 141602, https://doi.org/10.1103/PhysRevLett.108.141602.
[30] ATLAS Collaboration, Measurement of the ZZ Production Cross Section in Proton-Proton Collisions at TeV Using the and Channels with the ATLAS Detector, Journal of High Energy Physics, Vol. 01, 2017, pp. 099, https://doi.org/10.1007/JHEP01(2017)099.
[31] ATLAS Collaboration, Measurement of ZZ Production in pp Collisions at TeV and Limits on Anomalous ZZZ and Couplings with the ATLAS Detector, Journal of High Energy Physics, Vol. 03, 2013, pp. 128, https://doi.org/10.1007/JHEP03(2013)128.
[32] CMS Collaboration, Measurement of the ZZ Production Cross Section and Search for Anomalous Couplings in Final States in pp Collisions at TeV, Journal of High Energy Physics, Vol. 1, 2013, pp. 063, https://doi.org/10.1007/JHEP01(2013)063.
[33] ATLAS Collaboration, Measurement of the ZZ Production Cross Section in pp Collisions at TeV with the ATLAS Detector, Physical Review Letters, Vol. 116, Iss. 10, 2016, pp. 101801, https://doi.org/10.1103/PhysRevLett.116.101801.
[34] B. Grzadkowski, J. F. Gunion, M. Toharia, Higgs-radion Interpretation of the LHC data, Physics Letters B,
Vol. 712, Iss. 1-2, 2012, pp. 70-80, https://doi.org/10.1016/j.physletb.2012.04.037.
[35] G. F. Giudice, R. Rattazzi and J. D. Wells, Graviscalars from Higher Dimensional Metrics and Curvature Higgs Mixing, Nuclear Physics B, Vol. 595, Iss. 1-2, 2001, pp. 250-276, https://doi.org/10.1016/S0550-3213(00)00686-6.
[36] A. Ahmed, B. M. Dillon, B. Grzadkowski, J. F. Gunion, Y. Jiang, Implications of the Absence of High-mass Radion Signals, Physical Review D, Vol. 95, Iss. 9, 2017, pp. 095019, https://doi.org/10.1103/PhysRevD.95.095019.
[37] D. Dominici, B. Grzadkowski, J. F. Gunion, M. Toharia, The Scalar Sector of the Randall-Sundrum model, Nuclear Physics B, Vol. 671, 2003, pp. 243-292, https://doi.org/10.1016/j.nuclphysb.2003.08.020.
[38] B. Grzadkowski, J. F. Gunion, M. Toharia, Higgs-Radion Interpretation of the LHC data?, Physics Letters B,
Vol. 712, Iss. 1-2, 2012, pp. 70-80, https://doi.org/10.1016/j.physletb.2012.04.037.
[39] J. F. Gunion, H. E. Haber, G. L. Kane et al., The Higgs Hunter's Guide, CRC Press, 2000.
[40] M. Belfkir, T. A. Chowdhury, S. Nasri, Doubly-charged Scalars of the Minimal left-right Symmetric Model at a muon colliders, Physics Letters B, Vol. 852, 2024, pp. 138605, https://doi.org/10.1016/j.physletb.2024.138605.
[41] R. Rahaman, R. K. Singh, On Polarization Parameters of Spin-1 Particles and Anomalous Couplings in , The European Physical Journal C, Vol. 76, 2016, 539, https://doi.org/10.1140/epjc/s10052-016-4374-4.
[42] M. E. Peskin, D. V. Schroeder, An Introduction to Quantum Field Theory, CRC Press, 1995.
[43] B. T. H. Giang, The Cross-section for the Scattering at the LHeC, Chinese Physics C,
Vol. 47, No. 2, 2023, pp. 023108, https://doi.org/10.1088/1674-1137/aca4c2.
[44] T. M. Aliev, S. Bilmis, M. Solmaz, I. Turan, Scalar Unparticle Signals at the LHC, Physical Review D, Vol. 95, Iss. 9, 2017, pp. 095005, https://doi.org/10.1103/PhysRevD.95.095005.
[45] B. T. H. Giang, The Collision in the Randall-Sundrum model, HNUE Journal of Science, Vol. 66, Iss. 3, 2021, pp. 61-68, https://doi.org/10.18173/2354-1059.2021-0047.
https://doi.org/10.1016/j.physletb.2005.04.039.
[2] S. Frixione, G. Stagnitto, The Muon Parton Distribution Functions, Journal of High Energy Physics, Vol. 12, 2023, pp. 170, https://doi.org/10.1007/JHEP12(2023)170.
[3] M. Belfkir, T. A. Chowdhury, S. Nasri, Doubly-charged Scalars of the Minimal Left-Right Symmetric Model at Muon Colliders, Physics Letters B, Vol. 852, 2024, pp. 138605, https://doi.org/10.1016/j.physletb.2024.138605.
[4] J. F. Gunion, Physics at a Muon Collider, AIP Conference Proceedings, Vol. 435, Iss. 1, 1998, pp. 35-37, https://doi.org/10.1063/1.56231.
[5] R. B. Palmer, Muon Colliders, Reviews Accelerator Science and Technology, Vol. 7, 2014, pp. 137-159, https://doi.org/10.1142/S1793626814300072.
[6] H. A. Ali et al., The Muon Smasher’s Guide, Reports on Progress in Physics, Vol. 85, No. 8, 2022, pp. 084201, https://doi.org/10.1088/1361-6633/ac6678.
[7] S. Spor, M. Koksal, Investigation of Anomalous Triple Gauge Couplings In Collision At Multi-Tev Muon Colliders, Canadian Journal of Physics, Vol. 101, No. 10, 2023, pp. 549-559, https://doi.org/10.1139/cjp-2022-0312.
[8] D. Buttazzo, D. Redigolo, F. Sala, A. Tesi, Fusing Vectors Into Scalars at High Energy Lepton Colliders, Journal of High Energy Physics, Vol. 11, 2018, pp. 144, https://doi.org/10.1007/JHEP11(2018)144.
[9] A. Costantini, F. D. Lillo, F. Maltoni, L. Mantani, O. Mattelaer, R. Ruiz, X. Zhao, Vector Boson Fusion at Multi-TeV Muon Colliders, Journal of High Energy Physics, Vol. 09, 2020, pp. 80, https://doi.org/10.1007/JHEP09(2020)080.
[10] M. Chiesa, F. Maltoni, L. Mantani, B. Mele, F. Piccinini and X. Zhao, Measuring the Quartic Higgs self-coupling at a Multi-TeV Muon Collider, Journal of High Energy Physics, Vol. 09, 2020, pp. 98, https://doi.org/10.1007/JHEP09(2020)098.
[11] P. Bandyopadhyay, A. Costantini, Obscure Higgs Boson at Colliders, Physical Review D, Vol. 103, 2021,
pp. 015025, https://doi.org/10.1103/PhysRevD.103.015025.
[12] T. Han, S. Li, S. Su, W. Su, Y. Wu, Heavy Higgs Bosons in 2HDN at a Muon Collider, Physical Review D,
Vol. 104, 2021, pp. 055029, https://doi.org/10.1103/PhysRevD.104.055029.
[13] T. Han, Z. Liu, L. T. Wang, X. Wang, WIMPs at High Energy Muon Colliders, Physical Review D, Vol. 103, 2021, 075004, https://doi.org/10.1103/PhysRevD.103.075004.
[14] R. Capdevilla, F. Meloni, R. Simoniello, J. Zurita, Hunting Wino and Higgsino Dark Matter at the Muon Collider with Disappearing Tracks, Journal of High Energy Physics, Vol. 06, 2021, pp. 133, https://doi.org/10.1007/JHEP06(2021)133.
[15] S. Bottaro, A. Strumia, N. Vignaroli, Minimal Dark Matter Bound States at Future Colliders, Journal of High Energy Physics, Vol. 06, 2021, pp. 143, https://doi.org/10.1007/JHEP06(2021)143.
[16] R. Capdevilla, D. Curtin, Y. Kahn, G. Krnjaic, Discovering the Physics of at Future Muon Colliders, Physical Review D, Vol. 103, 2021, pp. 075028, https://doi.org/10.1103/PhysRevD.103.075028.
[17] W. Yin, M. Yamaguchi, Muon g – 2 at a Multi-TeV Muon Collider, Physical Review D, Vol. 106, 2022,
pp. 033007, https://doi.org/10.1103/PhysRevD.106.033007.
[18] M. Ruhdorfer, E. Salvioni, A. Weiler, A Global View of the Off-shell Higgs Portal, SciPost Physics, Vol. 8, Iss.2, 2020, pp. 027, https://doi.org/10.21468/SciPostPhys.8.2.027.
[19] G. Y. Huang, F. S. Queiroz, W. Rodejohann, Gauged at a Muon Collider, Physical Review D, Vol. 103, 2021, pp. 095005, https://doi.org/10.1103/PhysRevD.103.095005.
[20] P. Asadi, R. Capdevilla, C. Cesarotti and S. Homiller, Searching for Leptoquarks at Future Muon Colliders, Journal of High Energy Physics, Vol. 10, 2021, pp. 182, https://doi.org/10.1007/JHEP10(2021)182.
[21] T. Han, D. Liu, I. Low, X. Wang, Electroweak Couplings of the Higgs Boson At A Multi-TeV Muon Collider, Physical Review D, Vol. 103, 2021, pp. 013002, https://doi.org/10.1103/PhysRevD.103.013002.
[22] B. T. H. Giang, D. V. Soa, L. M. Dung, Investigation of the Scalar Unparticle and Anomalous Couplings at Muon Colliders in Final States with Multiple Photons in the Randall-Sundrum Model, International Journal of Modern Physics A, Vol. 39, No. 5-6, 2024, pp. 2450029, https://doi.org/10.1142/S0217751X24500295.
[23] M. Ruhdorfer, E. Salvioni, A. Wulzer, Invisible Higgs Boson Decay from Forward Muons at a Muon Collider, Physical Review D, Vol. 107, Iss. 9, 2023, pp. 095038, https://doi.org/10.1103/PhysRevD.107.095038.
[24] C. Accettura, D. Adams, R. Agarwal, C. Ahdida, C. Aime, Towards a Muon Collider, The European Physical Journal C, Vol. 83, No. 9, 2023, pp. 864; The European Physical Journal C, Vol. 84, No. 1, 2024, pp. 36 (Erratum), https://doi.org/10.1140/epjc/s10052-023-11889-x.
[25] Z. Lu, H. Li, Z. L. Han, Z. G. Si, L. Zhao, Phenomenology of Heavy Neutral Gauge Boson At Muon Collider, Science China Physics, Mechanics & Astronomy, Vol. 67, No. 3, 2024, pp. 231012, https://doi.org/10.1007/s11433-023-2263-6.
[26] L. Randall, R. Sundrum, Large Mass Hierarchy from a Small Extra Dimension, Physical Review Letters, Vol. 83, Iss. 17, 1999, pp. 3370-3373, https://doi.org/10.1103/PhysRevLett.83.3370.
[27] Y. Ohno, G. C. Cho, Production and Decay of a Heavy Radion in Randall-Sundrum Model at the LHC, EPJ Web of Conferences, Vol. 49, 2013, pp. 18003, https://doi.org/10.1051/epjconf/20134918003.
[28] F. A. Ajameih, The Radion As A Dark Matter Candidate, International Journal of Modern Physics A, Vol. 33,
No. 24, 2018, pp. 1850144, https://doi.org/10.1142/S0217751X18501440.
[29] K. Cheung, T. C. Yuan, Could the Excess Seen at 124-126 GeV Be Due to the Randall-Sundrum Radion?, Physical Review Letters, Vol. 108, 2012, pp. 141602, https://doi.org/10.1103/PhysRevLett.108.141602.
[30] ATLAS Collaboration, Measurement of the ZZ Production Cross Section in Proton-Proton Collisions at TeV Using the and Channels with the ATLAS Detector, Journal of High Energy Physics, Vol. 01, 2017, pp. 099, https://doi.org/10.1007/JHEP01(2017)099.
[31] ATLAS Collaboration, Measurement of ZZ Production in pp Collisions at TeV and Limits on Anomalous ZZZ and Couplings with the ATLAS Detector, Journal of High Energy Physics, Vol. 03, 2013, pp. 128, https://doi.org/10.1007/JHEP03(2013)128.
[32] CMS Collaboration, Measurement of the ZZ Production Cross Section and Search for Anomalous Couplings in Final States in pp Collisions at TeV, Journal of High Energy Physics, Vol. 1, 2013, pp. 063, https://doi.org/10.1007/JHEP01(2013)063.
[33] ATLAS Collaboration, Measurement of the ZZ Production Cross Section in pp Collisions at TeV with the ATLAS Detector, Physical Review Letters, Vol. 116, Iss. 10, 2016, pp. 101801, https://doi.org/10.1103/PhysRevLett.116.101801.
[34] B. Grzadkowski, J. F. Gunion, M. Toharia, Higgs-radion Interpretation of the LHC data, Physics Letters B,
Vol. 712, Iss. 1-2, 2012, pp. 70-80, https://doi.org/10.1016/j.physletb.2012.04.037.
[35] G. F. Giudice, R. Rattazzi and J. D. Wells, Graviscalars from Higher Dimensional Metrics and Curvature Higgs Mixing, Nuclear Physics B, Vol. 595, Iss. 1-2, 2001, pp. 250-276, https://doi.org/10.1016/S0550-3213(00)00686-6.
[36] A. Ahmed, B. M. Dillon, B. Grzadkowski, J. F. Gunion, Y. Jiang, Implications of the Absence of High-mass Radion Signals, Physical Review D, Vol. 95, Iss. 9, 2017, pp. 095019, https://doi.org/10.1103/PhysRevD.95.095019.
[37] D. Dominici, B. Grzadkowski, J. F. Gunion, M. Toharia, The Scalar Sector of the Randall-Sundrum model, Nuclear Physics B, Vol. 671, 2003, pp. 243-292, https://doi.org/10.1016/j.nuclphysb.2003.08.020.
[38] B. Grzadkowski, J. F. Gunion, M. Toharia, Higgs-Radion Interpretation of the LHC data?, Physics Letters B,
Vol. 712, Iss. 1-2, 2012, pp. 70-80, https://doi.org/10.1016/j.physletb.2012.04.037.
[39] J. F. Gunion, H. E. Haber, G. L. Kane et al., The Higgs Hunter's Guide, CRC Press, 2000.
[40] M. Belfkir, T. A. Chowdhury, S. Nasri, Doubly-charged Scalars of the Minimal left-right Symmetric Model at a muon colliders, Physics Letters B, Vol. 852, 2024, pp. 138605, https://doi.org/10.1016/j.physletb.2024.138605.
[41] R. Rahaman, R. K. Singh, On Polarization Parameters of Spin-1 Particles and Anomalous Couplings in , The European Physical Journal C, Vol. 76, 2016, 539, https://doi.org/10.1140/epjc/s10052-016-4374-4.
[42] M. E. Peskin, D. V. Schroeder, An Introduction to Quantum Field Theory, CRC Press, 1995.
[43] B. T. H. Giang, The Cross-section for the Scattering at the LHeC, Chinese Physics C,
Vol. 47, No. 2, 2023, pp. 023108, https://doi.org/10.1088/1674-1137/aca4c2.
[44] T. M. Aliev, S. Bilmis, M. Solmaz, I. Turan, Scalar Unparticle Signals at the LHC, Physical Review D, Vol. 95, Iss. 9, 2017, pp. 095005, https://doi.org/10.1103/PhysRevD.95.095005.
[45] B. T. H. Giang, The Collision in the Randall-Sundrum model, HNUE Journal of Science, Vol. 66, Iss. 3, 2021, pp. 61-68, https://doi.org/10.18173/2354-1059.2021-0047.