Dang Thi Minh Hue

Main Article Content

Abstract

The quantum phase transition in binary Bose Gases is studied using the Cornwall-Jackiw-Tomboulis effective potential approach in the double-bubble approximation, which preserves the Goldstone theorem. Its main feature is that the transition is second order occurring at ultra-cold temperatures associated with the type of inverse symmetry-breaking transition occurring when the chemical potential reaches a critical value. However, it cannot simultaneously occur for the two components of a binary mixture of Bose gases.

Keywords: Binary Bose Gases, Cornwall-Jackiw-Tomboulis (CJT), Super-fluidity; Symmetry restoration (SR); Symmetry non-restoration (SNR); Inverse symmetry breaking (ISB), Ultra-cold temperature.

References

[1] E. A. Cornell, C. E. Weiman Nobel Lecture: Bose-Einstein Condensation in a Dilute Gas, The First 70 Years and Some Recent Experiments, Rev. Mod. Phys, Vol. 74, 2002, pp. 875.
[2] J. Sabbatini, W. H. Zurek, M. J. Davis Phase Separation and Pattern Formation in a Binary Bose-Einstein Condensate. Phys. Rev. Lett., Vol. 107, 2011, pp. 230402, https://doi.org/10.1103/PhysRevLett.107.230402.
[3] W. Ketterle, Experimental Studies of Bose-Einstein Condensation, Physics Today, December, 1999, pp. 30-35.
[4] The Nobel Prize in Physics 2001, The Royal Swedish Academy of Sciences, 2011.
[5] T. H. Phat, N. V. Long, N. T. Anh, L. V.Hoa Bose-Einstein Condensation in Binary Mixture of Bose Gases, Phys. Rev., Vol. D78, 2008, pp. 105016.
[6] T. H. Phat, L. V. Hoa, D. T. M. Hue, Phase Structure of Bose-Einstein Condensate in Ultracold Bose Gases, Communications, Vol 24, No. 4, 2014, pp. 343-351.
[7] A. B. Francis, J. J. Dziarmaga, W. H. Zurek, Biased Dynamics of the Miscible-Immiscible Quantum Phase Transition in a Binary Bose-Einstein Condensate. Phys. Rev. B, Vol. 109, Iss. 6, 2024, pp. 064501, https://doi.org/10.1103/PhysRevB.109.064501.
[8] H. Zhu, W. K. Bai, J. H. Zheng, Y. M. Yu, L. Zhuang, W. M. Liu, Phase Transitions in Rotating Binary Bose-Einstein Condensates with Spin-Orbit and Rabi Couplings, Vol. 174, 2023, pp. 113918, https://doi.org/10.1016/j.chaos.2023.113918.
[9] M. R. Marek, J. Dziarmaga, H. Z. Wojciech, Symmetry Breaking Bias and the Dynamics of a Quantum Phase Transition. Phys. Rev. Lett., Vol. 123, 2019, pp. 130603, https://doi.org/10.1103/PhysRevLett.123.130603.
[10] M. Gitterman, Phase Transitions Modern Application, World Scientific, Singapore, 2014.
[11] L. D. Landau, E. M. Lifshitz, Statistical Physics, Pergamon Press, Oxford, 1987.
[12] L. F. Alexander, J. F. Christopher, Bose Gas: Theory and Experiment Contemporary Concepts of Condensed Matter Science, Vol. 5, 2012, pp. 27-67.
[13] G. Amelino, S. Y. Pi, Self-Consistent Improvement of the Finite-temperature Effective Potential, Phys. Rev. D, Vol. 47, 1993, pp. 2356, https://doi.org/10.1103/PhysRevD.47.2356.
[14] J. M. Cornwall, R. Jackiw, E. Tomboulis Effective Action for Composite Operators, Phys. Rev. D, Vol. 10, 1974, pp. 2428, https://doi.org/10.1103/PhysRevD.10.2428.
[15] J. Goldstone, A. Salam, S. Weinberg, Broken Symmetries, Phys. Rev., Vol. 127, 1962, pp. 965, https://doi.org/10.1103/PhysRev.127.965