Topological Solitons in High-order Nonlinear Material with Moiré Photonic Lattices
Main Article Content
Abstract
Moiré photonic lattices provide tunable geometric configurations that enable the formation and control of topological solitons. These solitons depend on the interplay between the underlying lattice geometry and high-order nonlinearities such as third and fifth-order effects. In this work, we employ Moiré lattices generated in a high-order nonlinear material to investigate the existence of topological solitons under diverse geometries, which are controlled by the twisting angle of sublattices. The formation of solitons in both commensurate and incommensurate Moiré lattice configurations allows us to explore deeper into the impact of geometric transitions on soliton stability and localization. The findings have potential applications in advanced photonic systems, including topological photonics and all-optical switching, where soliton stability and control are significant factors that can be optimized to enhance performance and functionality.
References
[2] P. G. Ifju, J. E. Masters, W. C. Jackson, The Use of Moiré Interferometry as an Aid to Standard test-method Development for Textile Composite Materials, Composites Science and Technology, Vol. 53, No. 2, 1995,
pp. 155-163, https://doi.org/10.1016/0266-3538(95)00014-3.
[3] B. Marcin, Designer’s Controlled and Randomly Generated Moiré Patterns in Architecture, Proceedings of GA2011–14th Generative Art Conference, Italy, 2011, pp. 289-301.
[4] L. Mengya, L. Wang, G. Yu, Developing Graphene‐Based Moiré Heterostructures for Twistronics, Advanced Science, Vol. 9, No. 1, 2022, pp. 2103170, https://doi.org/10.1002/advs.202103170.
[5] C. Yuan, et al, Unconventional Superconductivity in Magic-angle Graphene Superlattices, Nature, Vol. 556,
No. 7699, 2018, pp. 43-50, https://doi.org/10.1038/nature26160.
[6] A. G. Tudela, J. I. Cirac, Cold Atoms in Twisted-bilayer Optical Potentials, Physical Review A, Vol. 100, No. 5, 2019, pp. 53604, https://doi.org/10.1103/PhysRevA.100.053604.
[7] S. Tymoteusz et al., Simulating Twistronics Without a Twist, Physical Review Letters, Vol. 125, No. 3, 2020,
pp. 030504, https://doi.org/10.1103/PhysRevLett.125.030504.
[8] W. Peng et al., Localization and Delocalization of Light in Photonic Moiré Lattices, Nature, Vol. 577, No. 7788, 2020, pp. 42-46, https://doi.org/10.1038/s41586-019-1851-6.
[9] M. X. Rui et al., Magic-angle Lasers in Nanostructured Moiré Superlattice, Nature Nanotechnology, Vol. 16,
No. 10, 2021, pp. 1099-1105, https://doi.org/10.1038/s41565-021-00956-7.
[10] C. R. Woods et al., Commensurate–incommensurate Transition in Graphene on Hexagonal Boron Nitride, Nature Physics, Vol. 10, No. 6, 2014, pp. 451-456, https://doi.org/10.1038/nphys2954.
[11] H. Guangwei et al., Moiré Hyperbolic Metasurfaces, Nano Letters, Vol. 20, No. 5, 2020, pp. 3217-3224, https://doi.org/10.1021/acs.nanolett.9b05319.
[12] H. Guangwei et al., Tailoring Light with Layered and Moiré Metasurfaces, Trends in Chemistry, Vol. 3, No. 5, 2021, pp. 342-358, https://doi.org/10.1016/j.trechm.2021.02.004.
[13] H. Changming et al., Localization-delocalization Wavepacket Transition in Pythagorean Aperiodic Potentials, Scientific Reports, Vol. 6, No. 1, 2016, pp. 32546, https://doi.org/10.1038/srep32546.
[14] A. I. Sadegh et al., Mathematics of Soliton Transmission in Optical Fiber, in Book: Ring Resonator Systems to Perform Optical Communication Enhancement using Soliton, Springer, 2015, pp. 9-35, https://doi.org/10.1007/978-981-287-197-8_2.
[15] C. I. Christov, M. G. Velarde, Dissipative Solitons, Physica D: Nonlinear Phenomena, Vol. 86, No. 1-2, 1995,
pp. 323-347, https://doi.org/10.1016/0167-2789(95)00111-G.
[16] A. Ashkin, Acceleration and Trapping of Particles by Radiation Pressure, Physical Review Letters, Vol. 24,
No. 4, 1970, pp. 156, https://doi.org/10.1103/PhysRevLett.24.156.
[17] J. T. Barreiro, W. T. Chieh, P. G. Kwiat, Beating the Channel Capacity Limit for Linear Photonic Superdense Coding, Nature Physics, Vol. 4, No. 4, 2008, pp. 282-286, https://doi.org/10.1038/nphys919.
[18] C. Lixiang, J. Lei, J. Romero, Quantum Digital Spiral Imaging, Light: Science & Applications, Vol. 3, No. 3, 2014, pp. e153-e153, https://doi.org/10.1038/lsa.2014.34.
[19] F. Qidong et al., Optical Soliton Formation Controlled by Angle Twisting in Photonic Moiré Lattices, Nature Photonics, Vol. 14, No. 11, 2020, pp. 663-668, https://doi.org/10.1038/s41566-020-0679-9.
[20] S. K. Ivanov et al, Vortex Solitons in Moiré Optical Lattices, Optics Letters, Vol. 48, No. 14, 2023,
pp. 3797-3800, https://doi.org/10.1364/OL.494681.
[21] C. L. Cornel et al, Arresting Wave Collapse by Wave Self-rectification, Physical Review Letters, Vol. 91, No. 6, 2003, pp. 063904, https://doi.org/10.1103/PhysRevLett.91.063904.
[22] S. Roland, T. Pertsch, Absolute Measurement of the Quadratic Nonlinear Susceptibility of Lithium Niobate in Waveguides, Optical Materials Express, Vol. 2, No. 2, 2012, pp. 126-139, https://doi.org/10.1364/OME.2.000126.
[23] E. L. F. Filho et al, Robust Two-dimensional Spatial Solitons in Liquid Carbon Disulfide, Physical Review Letters, Vol. 110, No. 1, 2013, pp. 013901, https://doi.org/10.1103/PhysRevLett.110.013901.
[24] J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems, Society for Industrial and Applied Mathematics, 2010.
[25] N. T. Luan, N. T. Dung, T. T. Hai, N. T. Dat, D. D. Tho, N. V. Hung, Spatial Solitons in Moiré Photonic Lattices in Cubic-Quintic Competing Nonlinear Material, Solid State Phenomena, Vol. 368, 2024, pp. 35-41, https://doi.org/10.4028/p-Vd9XtZ.