Bui Khanh Hang, Ta Van Chien

Main Article Content

Abstract

In this work, we establish the complete convergence for sequences of arbitrary random variables taking values in Hilbert space  with general normalizing sequences. As corollaries, we present some convergence results for  -valued martingale difference sequences. Finally, the complete convergence of degenerate von Mises statistics is investigated.

Keywords: Complete convergence, Martingale difference, Hilbert space.

References

P. L. Hsu, H. Robbins, Complete Convergence and the Law of Large Numbers, Proc. Nat. Acad. Sci. USA,
Vol. 33, 1947, pp. 25-31.
R. Jajte, On the Strong Law of Large Numbers, The Annals of Probability, Vol. 31, No. 1, 2003, pp. 409-412.
T. C. Son, T. M. Cuong, K. B. Hang, L. V. Dung, On the Baum–Katz Theorem for Randomly Weighted Sums of Negatively Associated Random Variables with General Normalizing Sequences and Applications in Some Random Design Regression Models, Statistical Papers, Springer, Vol. 65, No. 3, 2023, pp. 1869-1900, https://doi.org/10.1007/s00362023-01483-4.
W. Yang, Strong Limit Theorems for Arbitrary Stochastic Sequences, Journal of mathematical analy- sis and applications, Vol. 326, 2007, pp. 1445-1451, https://api.semanticscholar.org/CorpusID: 123447548.
C. Jardas, J. Pecaric, N. Sarapa, A Note on Chung’s Strong Law of Large Numbers, Journal of Mathematical Analysis and Applications, Vol. 217, No. 1, 1998, pp. 328-334, https://doi.org/10.1006/jmaa.1998.5740.
W. Liu, W. Yang, A Class of Strong Limit Theorems for the Sequences of Arbitrary Random Variables, Statistics & probability letters, Vol. 64, No. 2, 2003, pp. 121-131, https://doi.org/10.1016/S01677152(03)00104-4.
W. Yang, X. Yang, A Note on Strong Limit Theorems for Arbitrary Stochastic Sequences, Statistics & Probability Letters, Vol. 78, No.14, 2008, pp. 2018-2023, https://doi.org/10.1016/j.spl.2008.01.084.
H. Zhang, R. Hao, W. Yang, Z. Bao, Some Limit Theorems for the Log-optimal Portfolio, Journal of Inequalities and Applications, Vol. 310, 2014, pp. 1-10, https://doi.org/10.1186/1029-242X-2014-310.
Z. Wang, Y. Dong, F. Ding, On Almost Sure Convergence for Sums of Stochastic Sequence, Communications in Statistics-Theory anD Methods, Vol. 48, No. 14, 2019, pp. 3609-3621, https://doi.org/10.1080/03610926.2018.1478102.
D. Qiu, P. Chen, V. Andrei, Complete Moment Convergence for L^P-mixingales, Acta Mathematica Scientia,
Vol. 37, No. 5, 2017, pp. 1319-1330, https://doi.org/10.1016/S0252-9602(17)30075-9.
S. Gan, Rosenthal’s Inequality and Its Applications for B-valued Random Elements, Acta Math Sci, Vol. 30, No. 2, 2010, pp. 327-334.
F. Cirstea, V. D. Radulescu, Nonlinear Problems with Boundary Blow-up: a Karamata Regular Variation Theory Approach, Asymptotic Analysis, Vol. 46, No. 3, 2006, pp. 275-298, https://doi.org/10.3233/ASY-2006-732.
N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular Variation, Encyclopedia of Mathematics and Its Applications, Series 27, Cambridge University Press, Cambridge, 1987.
R. Bojanic, E. Seneta, Slowly Varying Functions and Asymptotic Relations, J. Math. Anal. Appl, Vol. 34, 1971, pp. 302-315, https://doi.org/10.1016/0022-247X(71)90114-4.
H. Sun, Mercer Theorem for RKHS on Noncompact Sets, Journal of Complexity, Vol. 21, No. 3, 2005,
pp. 337-349, https://doi.org/10.1016/j.jco.2004.09.002.
H. Dehling, O. S. Sharipov, M. Wendler, Bootstrap for Dependent Hilbert Space-valued Random Variables with Application to von Mises Statistics, J. Multivariate Anal, Vol. 133C, 2015, pp. 200-215, https://doi.org/10.1016/j.jmva.2014.09.011.
T. C. Son, T. M. Cuong, L. V. Dung, On the Almost Sure Convergence for Sums of Negatively Superadditive Dependent Random Vectors in Hilbert Spaces and Its Application, Commun. Statist. Theor. Methods, Vol. 49, No. 11, 2020, pp. 1-17, https://doi.org/10.1080/03610926.2019.1584304.
T. C. Son, T. M. Cuong, L. V. Dung, T. V. Chien, On the Convergence for Weighted Sums of Hilbert-valued Coordinatewise Pairwise NQD Random Variables and Its Application, Commun. Statist. Theor. Methods,
Vol. 52, No. 23, 2022, pp. 8371-8387, https://doi.org/10.1080/03610926.2022.2062604.