Effect of Annealing Temperatures on Structural and Luminescence Properties of SnO2 Nanoparticles
Main Article Content
Abstract
This study aims to understand the structural and photoluminescence properties of SnO2 synthesized via the facile sol–gel method by systematically varying annealing temperatures. X-ray diffraction (XRD) analysis reveals that all samples possess a polycrystalline single-phase tetragonal rutile structure with no detectable impurity phases. Both the crystallite size and crystalline quality of the samples increase with rising annealing temperatures. Raman spectroscopy demonstrates the presence of forbidden Raman and IR-active modes in SnO2 nanoparticles. The positions and intensities of the Raman peaks are significantly influenced by the annealing temperature, which correlates with variations in crystallite size and crystalline quality of the synthesized materials. Additionally, photoluminescence (PL) spectra exhibit peaks in both the ultraviolet (UV) and visible regions. The UV emission peaks arise from electron recombination near the band gap, while the visible emission peaks are attributed to oxygen vacancies () and tin interstitials. This research provides valuable foundational knowledge that will support future studies on SnO2.
References
[2] D. Toloman, A. Popa, M. Stefan, T. D. Silipas, R. C. Suciu, L. B. Tudoran, O. Pana, Enhanced Photocatalytic Activity of Co Doped SnO2 Nanoparticles by Controlling the Oxygen Vacancy States, Optical Materials,
Vol. 110, No. 110472, 2020, https://doi.org/10.1016/j.optmat.2020.110472.
[3] A. Wang, K. Bushick, N. Pant, W. Lee, X. Zhang, J. Leveillee, F. Giustino, S. Poncé, E. Kioupakis, Electron Mobility of SnO2 from First Principles, Appl. Phys. Lett., Vol. 124, No. 172103, 2024, https://doi.org/10.1063/5.0198885.
[4] Y. Kong, Z. Ma, Y. Ye, G. He, Y. Sun, X. Zuo, X. Xiao, and J. Nan, Nanosized Amorphous SnO2 Particles Anchored in the Wheat Straw Carbon Substrate as the Stabilized Anode Material of Lithium-Ion Batteries, ACS Appl. Energy Mater., Vol. 1, No. 12, 2018, pp. 7065-7075, https://doi.org/10.1021/acsaem.8b01408.
[5] N. N. Dinh, M. C. Bernard, A. H. Goff, T. Stergiopoulos, P. Falaras, Photoelectrochemical Solar Cells Based on SnO2 Nanocrystalline Films, C.R. Chimie, Vol. 9, No. 5-6, 2006, pp. 676-683, https://doi.org/10.1016/j.crci.2005.02.042.
[6] G. Ramanathan, K. R. Murali, Photocatalytic Activity of SnO2 Nanoparticles, J. Appl. Electrochem., Vol. 52, 2022, pp. 849-859, https://doi.org/10.1007/s10800-022-01676-z.
[7] J. H. Lee, Y. J. You, M. A. Saeed, S. H. Kim , S. H. Choi, S. Kim, S. Y. Lee, J. S. Park, J. W. Shim, Undoped tin Dioxide Transparent Electrodes for Efficient and Cost-Effective Indoor Organic Photovoltaics (SnO2 Electrode for Indoor Organic Photovoltaics), NPG Asia Mater, Vol. 13, No. 43, 2021, pp. 1-10, https://doi.org/10.1038/s41427-021-00310-2.
[8] Y. Kong, Y. Li, X. Cui, L. Su, D. Ma, T. Lai, L. Yao, X. Xiao, Y. Wang, SnO2 Nanostructured Materials Used as Gas Sensors for the Detection of Hazardous and Flammable Gases: A review, Nano Materials Science, Vol. 4, No. 4, 2022, pp. 339-350, https://doi.org/10.1016/j.nanoms.2021.05.006.
[9] R. Ponte, E. Rauwel, P. Rauwel, Tailoring SnO2 Defect States and Structure: Reviewing Bottom-Up Approaches to Control Size, Morphology, Electronic and Electrochemical Properties for Application in Batteries, Materials, Vol. 16, No. 12, 2023, https://doi.org/10.3390/ma16124339.
[10] B. D. Cullity, S. R. Stock, Elements of X-Ray Diffraction, 3rd Ed., Prentice-Hall Inc., ISBN 0-201-61091-4.2001, pp. 96-102.
[11] W. L. Bragg, The Reflection of X-rays by Crystals, Proceedings of the Royal Society of London, Series A, Vol. 89, No. 611, 1913, pp. 482-493.
[12] N. Haddad, Z. B. Ayadi, H. Mahdhi, K. Djessas, Influence of Fluorine Doping on the Microstructure, Optical and Electrical Properties of SnO2 Nanoparticles, J. Mater. Sci.: Mater Electron, Vol. 28, 2017, pp. 15457-15465, https://doi.org/10.1007/s10854-017-7433-1.
[13] J. Zuo, C. Xu, X. Liu, C. Wang, C. Wang, Y. Hu, Y. Qian, Study of the Raman Spectrum of Nanometer SnO2, J. Appl. Phys., Vol. 75, No. 3, 1994, pp. 1835-1836, https://doi.org/10.1063/1.356348.
[14] S. Sambasivam, I. M. Obaidat, Effect of Iron Doping on ESR and Raman Spectra of SnO2 Nanomaterials, Materials Today: Proceedings, Vol. 28, 2020, pp. 587-590, https://doi.org/10.1016/j.matpr.2019.12.225.
[15] N. Ahmad, S. Khan, M. M. N. Ansari, Exploration of Raman Spectroscopy, Dielectric and Magnetic Properties of (Mn, Co) Co-doped SnO2 Nanoparticles, Phys. Rev. B Condens. Matter., Vol. 558, 2019, pp. 131-141, https://doi.org/10.1016/j.physb.2019.01.044.
[16] S. Roy, A. G. Joshi, S. Chatterjee, A. K. Ghosh, Local Symmetry Breaking in SnO2 Nanocrystals with Cobalt Doping and Its Effect on the Optical Properties, Nanoscale, Vol. 10, No. 22, 2018, pp. 10664-10682, https://doi.org/10.1039/C7NR07427A.
[17] L. Abello, B. Bochu, A. Gaskov, S. Koudryavtseva, G. Lucazeau, M. Roumyantseva, Structural Characterization of Nanocrystalline SnO2 by X-Ray and Raman Spectroscopy, J. Solid State Chem., Vol. 135, No. 1, 1998, pp.78-85. https://doi.org/10.1006/jssc.1997.7596.
[18] N. Bhardwaj, S. Kuriakose, S. Mohapatra, Structural and Optical Properties of SnO2 Nanotowers and Interconnected Nanowires Prepared by Carbothermal Reduction Method, J. Alloys Compd, Vol. 592, No. 15, 2014, pp. 238-243, https://doi.org/10.1016/j.jallcom.2013.12.268.
[19] W. B. H. Othmen, B. Sieber, H. Elhouichet, A. Addad, B. Gelloz, M. Moreau, S. Szunerits, R. Boukherroub, Effect of High Fe Doping on Raman Modes and Optical Properties of Hydrothermally Prepared SnO2 Nanoparticles, Materials Science in Semiconductor Processing, Vol. 77, 2018, pp. 31-39, https://doi.org/10.1016/j.mssp.2017.12.014.
[20] V. Bonu, A. Das, A. K. Sivadasan, A. K. Tyagi, S. Dhara, Invoking Forbidden Modes in SnO2 Nanoparticles Using Tip Enhanced Raman Spectroscopy, J. Raman Spectrosc, Vol. 46, No. 11, 2015, pp. 1037-1040, https://doi.org/10.1002/jrs.4747.
[21] A. Diéguez, A. R. Rodrı́guez, A. Vilà, J. R. Morante, The Complete Raman Spectrum of Nanometric SnO2 Particles. J. Appl. Phys., Vol. 90, No. 3, 2001, pp. 1550-1557, https://doi.org/10.1063/1.1385573.
[22] R. Mani, K. Vivekanandan, K. Vallalperuman, Synthesis of Pure and Cobalt (Co) Doped SnO2 Nanoparticles and its Structural, Optical and Photocatalytic Properties, J Mater Sci: Mater Electron, Vol. 28, No. 5, 2017,
pp. 4396-4402, https://doi.org/10.1007/s10854-016-6067-z.
[23] M. Xu, X. Ruan, J. Yan, Z. Zhang, J. Yun, W. Zhao, T. Li, Y. Shi, Synthesis, Growth Mechanism, and Photoluminescence Property of Hierarchical SnO2 Nanoflower-rod Arrays: an Experimental and First Principles Study, J. Mater. Sci., Vol. 51, No. 21, 2016, pp. 9613-9624, https://doi.org/10.1007/s10853-016-0169-0.
[24] H. Sefardjella, B. Boudjema, A. Kabir, G. Schmerber, Structural and Photoluminescence Properties of SnO2 Obtained by Thermal Oxidation of Evaporated Sn Thin Films, Current Applied Physics, Vol. 13, No. 9, 2013,
pp. 1971-1974, https://doi.org/10.1016/j.cap.2013.08.017.
[25] I. L. P. Raj, M. S. Revathy, A. J. Christy, N. Chidhambaram, V. G. S. AlFaify, Study on the Synergistic Effect of Terbium-doped SnO2 Thin Film Photocatalysts for Dye Degradation, J. Nanopart. Res., Vol. 22, No. 359, 2020, https://doi.org/10.1007/s11051-020-05084-2.