Nguyen Suan Han, Nguyen Nhu Xuan, Vu Toan Thang

Main Article Content

Abstract

Abstract: The functional integration method is used for studying the scattering of a scalar pion on nucleon with the anomalous magnetic moment in the framework of nonrenomalizable quantum field theory. In the asymptotic region s → ∞, |t| ≪ s the representation of eikonal type for the amplitude of pion-nucleon scattering is obtained. The anomalous magnetic moment leads to additional terms in the amplitude which describe the spin flips in the scattering process. It is shown that the renormalization problem does not arise in the asymptotic s → ∞ since the unrenomalized divergences disappear in this approximation. Coulomb interference is considered as an application.

Keywords: Quantum scattering; anomalous magnetic moment.

References

[1] H.D.I. Arbarbanel and C. Itzykson, Phys. Rev. Lett., 23(1969) 53.
[2] B.M. Barbashov, et al, Phys. Lett. 33B (1970)419.
[3] B.M. Barbashov, et al, Phys. Lee. B, 33(1970)484.
[4] V.N. Pervushin, Teor. Math. Fiz., 4(1970)28; Teor. Math. Fiz., 9(1971)264.
[5] M. Levy and J. Sucher, Phys. Rev. 186(1969)1656.
[6] S.J. Chang and S. Ma, Phys. Rev. Lett.,22 (1969)666
[7] V.A. Matveev and A.N. Tavkhelidze, Teor. Mat. Fiz. 9(1971)44.
[8] Nguyen Suan Han and V.V. Nesterenko, Teor. Math. Fiz., 24(1975)768.
[9] Nguyen Suan Han and V.N. Pervushin, Teor. Mat. Fiz. 29(1976)178.
[10] H.M. Fried, Functional Methods and Models in Quantum Field Theory, MIT Press, 1972.
[11] G. ’tHooft, Phys. Lett. B116(1992)1656, Nucl. Phys. B304(1988)367
[12] D. Amati, M. Ciafaloni and G. Veneziano, Phys. Lett. 197B (1987)81.
[13] I. Muzinich and M. Soldate, Phys. Rev. B37(1988) 353
[14] D. Kabat and M. Ortiz, Nucl. Phys. B388(1992)570.
[15] Nguyen Suan Han and Eap Ponna, IL Nuovo Cimento, 110A (1997)459-473
[16] Nguyen Suan Han, Eur. Phys. J. C16(2000)457-553
[17] Nguyen Suan Han and Nguyen Nhu Xuan, Eur. Phys. J., C24 (2002)643-651
[18] A. Bravar et al., in Pro. XVI Intenational Symposium High Energy Spin Physics 10-16 October
[19] (2004), Trieste, ed. Aulenbacher, Bradamante, Bressan, Martin, 700.
[20] O.V. Selyugin, Eur. Phys. J. A28(2006)83.
[21] B.Z. Kopeliovich and A.V. Tarasov, Phys. Lett., B497(2001)44.
[22] H. Banerjee and S. Malis, Phys. Rev., D9(1974)596.
[23] S. P. Kuleshov, et al, Teor. Mat. Fiz. 18(1974)147.
[24] R. Car and G.M. Circuta, Nuovo Cimento Lett., 11(1974)358.
[25] E. Brezin, C. Itzykson and J. Zinn-Justin, Phys. Rev., D1(1970)2349
[26] S.S. Schweber, An Introduction to the Relativistic Quantum Field Theory, Evanston, 1961.
[27] T.D. Lee and C. N. Yang, Phys. Rev.128(1962)885.
[28] S. Okubo, Prog. Theor. Phys. 11 (1954)80.
[29] M.K. Volkov, Ann. Phys., 49 (1968)202.
[30] A.T. Filippov, in: Nonlocal, Nonlinear, and Nonrenormalizable Field Theor., JINR, D2-7161 (in
[31] Russian), Dubna 1973, pp 133-155.
[32] B. Barbashov and M.K. Volkov, JEPT, 50(1966)660.
[33] G. A. Milekhin and E. S. Fradkin, JEPT, 45(1963)1926.
[34] S.P. Kuleshov, V.A. Matveev, and A.N. Sisakyan, Teor. Mat. Fiz.3(1970)73.
[35] H.A. Bethe, Ann. of Phys. 3(1958)190.
[36] I.V. Andreev, Sov. JETP. 12 (1970)634.
[37] G.B. West and D.R. Yennie, Phys. Rev,172(1968)1413.
[38] L.D. Soloviev and A. V. Schekacchev, Nuc.Phys. B40 (1972)596.
[39] J. Rix and R. M. Theler, Phys. Rev. 152 (1982)1357.
[40] R. Cahn, Z. Phys. C: Particles and Fields, 15(1966)1357.
[41] A. P. Vanzha, L. I. Lapidus, A.V. Tarashov, Sov. Nucl. Phys. 16(1972)1023.
[42] B.M. Barbashov, Sov. Phys.-JETP, 48(1965)607.
[43] V.A. Fock, Izv. AN SSSR, OMEN 4(1937)551.
[44] R. Feynman, Phys. Rev. 84 (1951)108.
[45] E. S. Fradkin, Nucl. Phys. 76(1966)588