Nguyen Van Hung, Phan Thanh Kieu

Main Article Content

Abstract

Abstract:In this paper we establish sufficient conditions for the solution mappings of parametric generalized vector quasiequilibrium problems to have the stability properties such as lower semicontinuity, upper semicontinuity, Hausdorff lower semicontinuity, continuity, Hausdorff continuity and closedness. The results presented in the paper improve and extend the main results of Kimura-Yao [J. Global Optim.  138, (2008) 429-- 443], Kimura-Yao [Taiwanese J. Math., 12, (2008) 649--669] and Anh-Khanh [J. Math. Anal. Appl., 294, (2004) 699--711]. Some examples are given to illustrate our results.

Keywords: Parametric generalized quasiequilibrium problems, lower semicontinuity, Hausdorff lower semicontinuity, upper semicontinuity, continuity, Hausdorff continuity closedness.

References

[1] K. Kimura and J. C. Yao (2008), Sensitivity analysis of solution mappings of parametric vector quasiequilibrium problems, J. Glob. Optim., 41 pp. 187-202.
[2] K. Kimura and J. C. Yao (2008), Sensitivity analysis of vector equilibrium problems, Taiwanese J. Math., 12, pp. 649-669.
[3] L. Q. Anh and P. Q. Khanh (2010), Continuity of solution maps of parametric quasiequilibrium problems. J. Glob. Optim. 46, pp 247-259 .
[4] L. Q. Anh and P. Q. Khanh. (2004), Semicontinuity of the solution sets of parametric multivalued vector quasiequilibrium problems, J. Math. Anal. Appl., 294, pp. 699-711.
[5] N. V. Hung (2013), Stability of solution set for parametric generalized vector mixed quasivariational inequality problem. J. Inequal. Appl., accepted,
[6] K. Kimura and J. C. Yao (2008), Semicontinuity of solution mappings of parametric generalized vector equilibrium problems, J. Optim. Theory Appl., 138, pp. 429– 443.
[7] K. Kimura and J. C. Yao (2008), Sensitivity analysis of solution mappings of parametric generalized quasi vector equilibrium problems, Taiwanese J. Math., 9, pp. 2233-2268.
[8] D. T. Luc (1989), Theory of Vector Optimization: Lecture Notes in Economics and Mathematical Systems, Springer-Verlag Berlin Heidelberg.