Vu Thu Hien, Nguyen Thi Minh Phuong

Main Article Content

Abstract

We report on an environmentally friendly and versatile chemical solution deposition route to K0.5Na0.5NbO3 (KNN) thin films. The excess amounts of K and Na in KNN precursor solutions was found to be strong influence on perovskite KNN single-phase thin films. It was revealed from Raman spectroscopic analysis data that a change in scattering mode was observed for the KNN thin films fabricated under various processing conditions. This change was due to the chemical composition fluctuation of K and Na in the KNN thin films during heat treatment. The leakage current and ferroelectric properties of the thin films were strongly affected by the excess amounts of K and Na as well. KNN thin films with 20 mol% excess K and Na exhibited a leaky ferroelectric polarization–electric field (P–E) hysteresis. Leakage current density of the film was 3.85´10-8 A/cm2 at applied field of -60 kV/cm.

Keywords: Lead-free KNN thin film, chemical solution deposition, microstructure, ferroelectricity

References

[1] S. Gupta, D. Maurya, Y. Yan, S. Priya, Chapter 3: Development of KNN-Based Piezoelectric Materials, in: S. Priya, S. Nahm (Eds.), Springer, New York, NY, 2012: pp. 89–119.
[2] A. Safari, M. Hejazi, Chapter 5: Lead-Free KNN-Based Piezoelectric Materials, in: S. Priya, S. Nahm (Eds.), Springer, New York, NY, 2012: pp. 139–176.
[3] X. Wang, U. Helmersson, S. Olafsson, S. Rudner, L. Wernlund, S. Gevorgian, Growth and field dependent dielectric properties of epitaxial Na0.5K0.5NbO3 thin films, Appl. Phys. Lett. 73 (1998) 927–929.
[4] M. Blomqvist, S. Khartsev, A. Grishin, A. Petraru, C. Buchal, M. Blomqvist, et al., Optical waveguiding in magnetron-sputtered Na0.5K0.5NbO3 thin films on sapphire substrates, Appl. Phys. Lett. 82 (2003) 439–441.
[5] C.W. Ahn, E.D. Jeong, S.Y. Lee, H.J. Lee, S.H. Kang, I.W. Kim, Enhanced ferroelectric properties of LiNbO3 substituted Na0.5K0.5NbO3 lead-free thin films grown by chemical solution deposition, Appl. Phys. Lett. 93 (2008) 212905.
[6] A. Khan, Z. Abas, H. Soo Kim, I.-K. Oh, Piezoelectric thin films: an integrated review of transducers and energy harvesting, Smart Mater. Struct. 25 (2016) 053002.
[7] F. Söderlind, P.-O. Käll, U. Helmersson, Sol–gel synthesis and characterization of Na0.5K0.5NbO3 thin films, J. Crys. Growth. 281 (2005) 468–474.
[8] K. Tanaka, K. Kakimoto, H. Ohsato, Fabrication of highly oriented lead-free (Na, K)NbO3 thin films at low temperature by Sol–Gel process, J CRYST GROWTH. 294 (2006) 209–213.
[9] Y. Nakashima, W. Sakamoto, T. Shimura, T. Yogo, Chemical Processing and Characterization of Ferroelectric (K,Na)NbO3 Thin Films, Jpn. J. Appl. Phys. 46 (2007) 6971–6975.
[10] K. Tanaka, H. Hayashi, K. Kakimoto, H. Ohsato, T. Iijima, Effect of (Na, K)-Excess Precursor Solutions on Alkoxy-Derived (Na, K)NbO3 Powders and Thin Films, Jpn. J. Appl. Phys. 46 (2007) 6964–6970.
[11] H. Kungl, M.J. Hoffmann, Influence of Alkaline and Niobium Excess on Sintering and Microstructure of Sodium-Potassium Niobate (K0.5 Na0.5)NbO3, J Am. Ceram. Soc. 93 (2010) 1270–1281.
[12] X. Yan, W. Ren, X. Wu, P. Shi, X. Yao, Lead-free (K, Na)NbO3 ferroelectric thin films: Preparation, structure and electrical properties, J. Alloy. Compd. 508 (2010) 129–132.
[13] Y. Nakashima, W. Sakamoto, H. Maiwa, T. Shimura, T. Yogo, Lead-Free Piezoelectric (K,Na)NbO3 Thin Films Derived from Metal Alkoxide Precursors, JPN J APPL PHYS. 46 (2007) 311–313.
[14] C.W. Ahn, H.-I. Hwang, K.S. Lee, B.M. Jin, S. Park, G. Park, et al., Raman Spectra Study of K0.5Na0.5NbO3 Ferroelectric Thin Films, Jpn. J. Appl. Phys. 095801 (2010) 09580.
[15] M.M.S. Hamim, T.I.S. Ã, K.O. Hi, High Pressure Raman Study of KNbO3 – KTaO3 and KNbO3 – NaNbO3 Mixed Crystals, J. Phys. Soc. Jpn. 72 (2003) 551–555.
[16] H. Search, C. Journals, A. Contact, M. Iopscience, I.P. Address, Raman Scattering Study of Piezoelectric (Na0.5K0.5) NbO3-LiNbO3 Ceramics, Jpn. J. Appl. Phys. 46 (2005) 7064–7067.
[17] H.J. Trodahl, N. Klein, D. Damjanovic, N. Setter, B. Ludbrook, D. Rytz, et al., Raman spectroscopy of (K,Na) NbO3 and (K,Na) 1 − xLixNbO3, Appl. Phys. Lett. 93 (2015) 262901.
[18] J. Liu, X. Li, Y. Li, Synthesis and characterization of nanocrystalline niobates, J. Cryst. Growth. 247 (2003) 419–424.
[19] C.W. Ahn, S.Y. Lee, H.J. Lee, A. Ullah, J.S. Bae, E.D. Jeong, et al., The effect of K and Na excess on the ferroelectric and piezoelectric properties of K0.5Na0.5NbO3 thin films, J Phys D Appl Phys. 42 (2009) 215304.
[20] M. Abazari, A. Safari, Effects of doping on ferroelectric properties and leakage current behavior of KNN-LT- LS thin films on SrTiO3 substrate, J. Appl. Phys. 105 (2009) 094101.
[21] M. Abazari, A. Safari, Effect of manganese doping on remnant polarization and leakage current in K0.44 Na0.52, Li0.04)(Nb0.84, Ta0.10, Sb0.06)O3 epitaxial thin films on SrTiO3, J. Appl. Phys. 92 (2008) 212903.
[22] K. Prume, T. Schmitz, S. Tiedke, Dynamic leakage current compensation in ferroelectric thin-film capacitor structures, Appl. Phys. Lett. 86 (2005) 142907.
[23] C. Cho, A. Grishin, C. Cho, A. Grishin, Background oxygen effects on pulsed laser deposited Na0.5K0.5NbO3 films: From superparaelectric state to ferroelectricity, Appl. Phys. Lett. 87 (2000) 4439–4448.