Vu Thu Hien, Nguyen Thi Minh Phuong

Main Article Content


We report on an environmentally friendly and versatile chemical solution deposition route to K0.5Na0.5NbO3 (KNN) thin films. The excess amounts of K and Na in KNN precursor solutions was found to be strong influence on perovskite KNN single-phase thin films. It was revealed from Raman spectroscopic analysis data that a change in scattering mode was observed for the KNN thin films fabricated under various processing conditions. This change was due to the chemical composition fluctuation of K and Na in the KNN thin films during heat treatment. The leakage current and ferroelectric properties of the thin films were strongly affected by the excess amounts of K and Na as well. KNN thin films with 20 mol% excess K and Na exhibited a leaky ferroelectric polarization–electric field (P–E) hysteresis. Leakage current density of the film was 3.85´10-8 A/cm2 at applied field of -60 kV/cm.

Keywords: Lead-free KNN thin film, chemical solution deposition, microstructure, ferroelectricity


[1] S. Gupta, D. Maurya, Y. Yan, S. Priya, Chapter 3: Development of KNN-Based Piezoelectric Materials, in: S. Priya, S. Nahm (Eds.), Springer, New York, NY, 2012: pp. 89–119.
[2] A. Safari, M. Hejazi, Chapter 5: Lead-Free KNN-Based Piezoelectric Materials, in: S. Priya, S. Nahm (Eds.), Springer, New York, NY, 2012: pp. 139–176.
[3] X. Wang, U. Helmersson, S. Olafsson, S. Rudner, L. Wernlund, S. Gevorgian, Growth and field dependent dielectric properties of epitaxial Na0.5K0.5NbO3 thin films, Appl. Phys. Lett. 73 (1998) 927–929.
[4] M. Blomqvist, S. Khartsev, A. Grishin, A. Petraru, C. Buchal, M. Blomqvist, et al., Optical waveguiding in magnetron-sputtered Na0.5K0.5NbO3 thin films on sapphire substrates, Appl. Phys. Lett. 82 (2003) 439–441.
[5] C.W. Ahn, E.D. Jeong, S.Y. Lee, H.J. Lee, S.H. Kang, I.W. Kim, Enhanced ferroelectric properties of LiNbO3 substituted Na0.5K0.5NbO3 lead-free thin films grown by chemical solution deposition, Appl. Phys. Lett. 93 (2008) 212905.
[6] A. Khan, Z. Abas, H. Soo Kim, I.-K. Oh, Piezoelectric thin films: an integrated review of transducers and energy harvesting, Smart Mater. Struct. 25 (2016) 053002.
[7] F. Söderlind, P.-O. Käll, U. Helmersson, Sol–gel synthesis and characterization of Na0.5K0.5NbO3 thin films, J. Crys. Growth. 281 (2005) 468–474.
[8] K. Tanaka, K. Kakimoto, H. Ohsato, Fabrication of highly oriented lead-free (Na, K)NbO3 thin films at low temperature by Sol–Gel process, J CRYST GROWTH. 294 (2006) 209–213.
[9] Y. Nakashima, W. Sakamoto, T. Shimura, T. Yogo, Chemical Processing and Characterization of Ferroelectric (K,Na)NbO3 Thin Films, Jpn. J. Appl. Phys. 46 (2007) 6971–6975.
[10] K. Tanaka, H. Hayashi, K. Kakimoto, H. Ohsato, T. Iijima, Effect of (Na, K)-Excess Precursor Solutions on Alkoxy-Derived (Na, K)NbO3 Powders and Thin Films, Jpn. J. Appl. Phys. 46 (2007) 6964–6970.
[11] H. Kungl, M.J. Hoffmann, Influence of Alkaline and Niobium Excess on Sintering and Microstructure of Sodium-Potassium Niobate (K0.5 Na0.5)NbO3, J Am. Ceram. Soc. 93 (2010) 1270–1281.
[12] X. Yan, W. Ren, X. Wu, P. Shi, X. Yao, Lead-free (K, Na)NbO3 ferroelectric thin films: Preparation, structure and electrical properties, J. Alloy. Compd. 508 (2010) 129–132.
[13] Y. Nakashima, W. Sakamoto, H. Maiwa, T. Shimura, T. Yogo, Lead-Free Piezoelectric (K,Na)NbO3 Thin Films Derived from Metal Alkoxide Precursors, JPN J APPL PHYS. 46 (2007) 311–313.
[14] C.W. Ahn, H.-I. Hwang, K.S. Lee, B.M. Jin, S. Park, G. Park, et al., Raman Spectra Study of K0.5Na0.5NbO3 Ferroelectric Thin Films, Jpn. J. Appl. Phys. 095801 (2010) 09580.
[15] M.M.S. Hamim, T.I.S. Ã, K.O. Hi, High Pressure Raman Study of KNbO3 – KTaO3 and KNbO3 – NaNbO3 Mixed Crystals, J. Phys. Soc. Jpn. 72 (2003) 551–555.
[16] H. Search, C. Journals, A. Contact, M. Iopscience, I.P. Address, Raman Scattering Study of Piezoelectric (Na0.5K0.5) NbO3-LiNbO3 Ceramics, Jpn. J. Appl. Phys. 46 (2005) 7064–7067.
[17] H.J. Trodahl, N. Klein, D. Damjanovic, N. Setter, B. Ludbrook, D. Rytz, et al., Raman spectroscopy of (K,Na) NbO3 and (K,Na) 1 − xLixNbO3, Appl. Phys. Lett. 93 (2015) 262901.
[18] J. Liu, X. Li, Y. Li, Synthesis and characterization of nanocrystalline niobates, J. Cryst. Growth. 247 (2003) 419–424.
[19] C.W. Ahn, S.Y. Lee, H.J. Lee, A. Ullah, J.S. Bae, E.D. Jeong, et al., The effect of K and Na excess on the ferroelectric and piezoelectric properties of K0.5Na0.5NbO3 thin films, J Phys D Appl Phys. 42 (2009) 215304.
[20] M. Abazari, A. Safari, Effects of doping on ferroelectric properties and leakage current behavior of KNN-LT- LS thin films on SrTiO3 substrate, J. Appl. Phys. 105 (2009) 094101.
[21] M. Abazari, A. Safari, Effect of manganese doping on remnant polarization and leakage current in K0.44 Na0.52, Li0.04)(Nb0.84, Ta0.10, Sb0.06)O3 epitaxial thin films on SrTiO3, J. Appl. Phys. 92 (2008) 212903.
[22] K. Prume, T. Schmitz, S. Tiedke, Dynamic leakage current compensation in ferroelectric thin-film capacitor structures, Appl. Phys. Lett. 86 (2005) 142907.
[23] C. Cho, A. Grishin, C. Cho, A. Grishin, Background oxygen effects on pulsed laser deposited Na0.5K0.5NbO3 films: From superparaelectric state to ferroelectricity, Appl. Phys. Lett. 87 (2000) 4439–4448.