Fabricating Ultra-thin Silicon Nitride Membranes Suspended on Silicon Wafer
Main Article Content
Abstract
Ultrathin silicon nitride SiNx membrane suspended on a silicon wafer is a popular two-dimensional platform in MEMS applications. The unsupported membrane has a low thermal conductivity, is electrically insulated, and very robust against mechanical impact. Remarkably thin, it is difficult to fabricate and manipulate. Recently equipped with a dual chamber system for plasma enhanced chemical vapor deposition (PECVD) and reactive ion etching, we calibrate it to deposit silicon nitride Si3N4, silicon dioxide SiO2, and to dry etch these materials. Based on the superb quality of Si3N4, we perform a through-wafer etch that creates suspended Si3N4 membranes. The recipe is reliable and reproducible. We analyze the membrane’s chemical composition and optical properties. Although created by PECVD, the membrane is so robust that it survives multiple lithography steps. It extends our capability to study thermal transport at the submicron scale as well as to fabricate micron size devices for MEMS applicati
References
[2] X. Zhang, P. J. Lowell, B. L. Wilson, G. C. O’Neil, J. N. Ullom, Macroscopic Subkelvin Refrigerator Employing Superconducting Tunnel Junctions, Phys. Rev. Appl. 4 (2015), 024006 (7pp).
[3] A. Luukanen, A. M. Savin, T. I. Suppula, J. P. Pekola, M. Prunnila, and J. Ahopelto, Integrated SINIS refrigerators for efficient cooling of cryogenic detectors, AIP Conf. Proc. 605 (2002), 375-378 .
[4] K. Schwab, E. A. Henriksen, J. M. Worlock, and M. L. Roukes, Measurement of the quantum of thermal conductance, Nature 404 (2000), 974-977.
[5] M. Meschke, W. Guichard, and J. P. Pekola, Single-mode heat conduction by photons, Nature 444 (2006), 187-190.
[6] B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernandez-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, Enhancement of near-field radiative heat transfer using polar dielectric thin films, Nature Nanotechnology 10 (2015), 253-258 .
[7] Linseis Thermal Analysis, Robbinsville, NJ, USA. https://www.linseis.com. (accessed 01 Aug, 2020).
[8] T. L. Morkveda, W. A. Lopesa, J. Hahmb, S. J. Sibenerb and H. M. Jaeger, Silicon nitride membrane substrates for the investigation of local structure in polymer thin films, Polymer communications 39 (1998), 3871-3875.
[9] K. Suzuki, J. Matsui, and T. Torikai, SiN membrane masks for X-ray lithography, J. Vac. Sci. Technol. 20 (1982), 191-194.
[10] D. Hohm and G. Hess, A subminiature condenser microphone with silicon nitride membrane and silicon back plate, J. Acoust. Soc. Am. 85 (1998), 476-480.
[11] G. M. Rebeiz and J. B. Muldavin, RF MEMS switches and switch circuits, IEEE Microwave magazine. 2 (2001), 59-71.
[12] M. Kitazawa, K. Shiotani and A. Toda, Batch Fabrication of Sharpened Silicon Nitride Tips, Jpn. J. Appl. Phys. 42 (2003), 4844-4847.
[13] B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. B. Jayich, J. D. Thompson, and J. G. E. Harris, High quality mechanical and optical properties of commercial silicon nitride membranes, App. Phys. Lett. 92 (2008), 103125(1)-103125(3).
[14] Y. Toivola, J. Thurn, and R. Cook, Influence of deposition conditions on mechanical properties of low-pressure chemical vapor deposited low-stress silicon nitride films, J. Appl. Phys. 94 (2003), 6915-6922.
[15] X.J. Liu, Z.Y. Huang, L. P. Huang, Silicon Nitride Films Deposited by Low Pressure Chemical Vapor Deposition from SiH4 – NH3 – N2 systems, Engineering Materials 264 (2004), 643-648.
[16] C. H. Ling, C. Y. Kwok and K. Prasad, Silicon Nitride films prepared by Plasma-Enhanced Chemical Vapour Deposition (PECVD) of SiH4/NH3/N2 mixtures: some physical properties, Jpn. J. Appl. Phys. 25 (1986), 1490-1494.
[17] H. U. Rahman, B. C. Johnson, J. C. Mccallum, E. Gauja, R. Ramer, Fabrication and characterization of PECVD silicon nitride for RF MEMS applications, Microsyst. Technol. 19 (2013), 131-136.
[18] J. Y. Chen, Y. M. Liao, C. C. Lee, and G. C. Chi, Fabrication of low-stress SiNxHy membranes deposited by PECVD, J. Electrochem. Soc. 154 (2007), D227-D229.
[19] A. N. Sorokin, A. A. Karpushin and V. A. Gritsenko, Electronic Structure of SiNx, JETP Lett. 98 (2013), 709-712.
[20] M. Ghaderi, R.F. Wolffenbuttel, Design and fabrication of ultrathin silicon-nitride membranes for use in UV- visible air gap-based MEMS optical filters, J. Phys.: Conf. Ser. 575 (2016), 012032(7pp).
[21] A. Brockmeier, F. J. Santos Rodriguez, M. Harrison, Surface tension and its role for vertical wet etching of silicon, J. Micromech. Microeng. 22 (2012), 125012(7pp).
[22] G. E. Jellison, F.A. Modine, P. Doshi, A. Rohatgi, Spectroscopic ellipsometry characterization of thin-film silicon nitride, Thin Solid Films 313 (1998), 193-197.
[23] T. Grigaitis, A. Naujokaitis, S. Tumėnas, G. Juška, and K. Arlauskas, Characterization of silicon nitride layers deposited in three-electrode plasma-enhanced CVD chamber, Lith. J. Phys. 55 (2015), 35-43.
[24] A. W. Grant, Q. H. Hu and B. Kasemo, Transmission electron microscopy ‘windows’ for nanofabricated structure, Nanotechnology 15 (2004), 1175-1181.
[25] V. Linseis, F. Volklein, H. Reith, P. Woias, and K. Nielsch, Analytical investigation of the limits for the in-plane thermal conductivity measurement using a suspended membrane setup, Journal of electronics materials 47 (2018), 3203-3209.
[26] Q. Song, Z. Cui, S. Xia, Z. Chen, J. Zhang, Measurement of SiNx thin film thermal property with suspended membrane structure, Sensors and Actuators A 112 (2004), 122-126.
[27] L. T. Dang, T. H. Dang, T. T. T. Nguyen, T. T. Nguyen, H. M. Nguyen, T. V. Nguyen, and H. Q. Nguyen, Thermoelectric microrefrigerator based on Bismuth/Antimony Telluride, Journal of Electronics Materials 46 (2017), 3660-3666.